
Incentivizing Investment and Reliability: A Study on
Electricity Capacity Markets

Cheng Guo
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, cguo2@clemson.edu

Christian Kroer
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027,

christian.kroer@columbia.edu

Yury Dvorkin
Department of Civil and System Engineering, Johns Hopkins University, Baltimore, MD 21218, ydvorki1@jhu.edu

Daniel Bienstock
Department of Industrial Engineering and Operations Research, Columbia University, New York, NY 10027,

dano@columbia.edu

The capacity market, a marketplace to exchange available generation capacity for electricity production,

provides a major revenue stream for generators and is adopted in several U.S. regions. A subject of ongoing

debate, the capacity market is viewed by its proponents as a crucial mechanism to ensure system reliability,

while critics highlight its drawbacks such as market distortion. Under a novel analytical framework, we

rigorously evaluate the impact of the capacity market on generators’ revenue and system reliability. More

specifically, based on market designs at New York Independent System Operator (NYISO), we propose

market equilibrium-based models to capture salient aspects of the capacity market and its interaction with

the energy market. We also develop a leader-follower model to study market power. We show that the

capacity market incentivizes the investment of generators with lower net cost of new entry. It also facilitates

reliability by preventing significant physical withholding when the demand is relatively high. Nevertheless,

the capacity market may not provide enough revenue for peaking plants. Moreover, it is susceptible to market

power, which necessitates tailored market power mitigation measures depending on market dynamics. We

provide further insights via large-scale experiments on data from NYISO markets.

Subject classifications : Energy policies; reliability; bidding/auctions.

Area of review : Environment, Energy, and Sustainability.

1. Introduction

The 2021 Texas power crisis reignited debates on the energy-only market design of the Electric

Reliability Council of Texas (ERCOT). ERCOT and Southwest Power Pool (SPP) are the only

independent system operators (ISOs) in the US that implement energy-only markets. In all other

ISOs, generators earn extra payments from some form of capacity market, where they are paid for

providing available capacity. Since generators in the energy-only market do not get revenue from

the capacity market, they rely on high peak-hour prices to make adequate revenue. Those high
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peak-hour prices pose several challenges in the energy-only market, including price volatility and

high electricity prices, such as the $9000/MWh price during the Texas crisis.

An important goal of both the capacity market and the energy-only market is to support system

reliability via resource adequacy, i.e., maintaining a robust generation portfolio in the system. This

is achieved by ensuring sufficient income for generators to cover both investment and operational

costs. While the capacity market is widely adopted and is believed to offer benefits such as price

stability, certain perceived drawbacks prevent its broader acceptance. Thus, there is a pressing need

to evaluate the capacity market’s performance, which is a topic that has not been very well studied

(GAO 2017). In this work, we focus on evaluating the capacity market’s impact on generators’

revenue and system reliability.

Formally, the capacity market is a forward market that trades available electricity generation

capacity at a future time. Before the introduction of capacity markets, existing market mechanisms

failed to incentivize adequate investment into new generation capacity, which in turn undermines

system reliability. Payments from the capacity market can be seen as extra revenue streams to

generators, complementary to the revenue from selling electricity in the energy market, which is the

market for trading electricity. Cramton et al. (2013) show that the capacity market ensures resource

adequacy, reduces physical withholding, and decreases price volatility. Jenkin et al. (2016) point

out that as growing levels of renewable energy suppresses electricity prices, the capacity market

becomes an increasingly important source of income for generators. On the other hand, Oren (2000)

mentions that the capacity market could distort energy prices and result in over-investment, and

Mays et al. (2019) find that the current design of the capacity market may favor high-carbon

resources. In addition, Duong (2019) shows that in NYISO suppliers in the capacity market may

submit uneconomic bids that suppress the market clearing prices. In this work, we assess the

capacity market under a rigorous analytical framework, featuring novel market equilibrium-based

models based on NYISO practice, as well as a new perspective that considers the interplay between

the capacity market and the energy market. Our analysis on the capacity market focuses on its

impacts on generators’ revenue and the subsequent implications for market outcomes, and we strive

to provide rich insights for both regulators and market participants.

More broadly, studying the capacity market could shed light on an important question in mech-

anism design: how to provide incentives for investment. When selling electricity in the energy

market, generators set bidding prices based on marginal costs, while as pointed out by Budde and

Göx (1997), such bidding prices may not provide incentive for investment. Recently, Akbarpour
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et al. (2022) distinguish between investment and allocative guarantees of a mechanism, outlining

conditions under which those guarantees coincide. In this regard, the joint capacity and energy

markets, prevalent in most ISOs in the U.S., can be viewed as a mechanism designed aiming to

achieve this objective: supporting optimal decisions in both investment and allocation. By examin-

ing the interplay between the capacity and energy markets and its impact on generators’ revenue,

we offer a deeper understanding into the implications of this real-life market design.

1.1. Main Contributions

The capacity market is an important component of power system operations, yet its performance

is not very well studied (GAO 2017), nor is its effectiveness in ensuring resource adequacy fully as-

sessed (Bialek and Unel 2018). We propose tractable equilibrium-based and game-theoretic models

rooted in real-life practice, both analytically and numerically examine the outcome of the capacity

market and its implications on generators’ revenue and system reliability.

It is challenging to conduct economic analysis on large-scale capacity and energy markets, given

the complicating physical constraints and market features. One contribution of our work is to

develop a novel analytical framework, which enables economic analysis on realistic models of ca-

pacity and energy markets. To date, the majority of large-scale studies on the capacity market

are based on computational simulations, while analytical studies employing stylized models often

make simplifying assumptions regarding market features, such as the market size and the clearing

process. Our method enables a more accurate and detailed assessment of the capacity market,

offering nuanced discussions and novel insights. In addition, we are able to connect our theoretical

results with several observations in real-life practice and in our case study.

Furthermore, our work has several innovations in terms of modeling and computation. Firstly,

we propose a novel model which captures salient aspects of the NYISO capacity market auction.

We model the market clearing process with a quadratic convex (QC) optimization problem, which

is tractable and can potentially be used for other uniform-price auctions with a similar structure.

Secondly, thanks to the convexity of the QC model, we build a trilevel model for a leader-follower

game in joint capacity and energy markets. To speed up the solution of the trilevel model, we

propose a valid inequality and reformulation techniques by leveraging our insights into the capacity

market, which make it possible to solve a large-scale NYISO-based case study. Finally, the detailed

modeling of the capacity market enables us to assume a new perspective in this study, where we

consider the interplay between the capacity and energy markets, as well as its impact on generators’

revenue, which leads to novel insights.
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In terms of our findings, we identify a key factor that impacts the effectiveness of the capacity

market in ensuring resource adequacy: the net cost of new entry (CONE) of generators. The net

CONE is the magnitude of generators’ deficit after they receive payments in the energy market.

We find that the capacity market is positioned to ensure profitability of generators with lower net

CONE, but may not sufficiently reimburse generators with high net CONE. Also, generators with

high net CONE are more likely to benefit from exercising market power in the capacity market.

Another factor that influences the performance of the capacity market is the demand level. The

capacity market enjoys better properties at higher demand levels, as it makes more generators

profitable, is less likely to be affected by market power, and is more effective at reducing physical

withholding in the energy market. On the other hand, when demand is low or if the market is sparse,

market power could become a more prominent problem. We suggest different market mitigation

measures based on the demand level, demand elasticity, and market density.

Our analysis also deepens our understanding on how the capacity market impacts system relia-

bility. The capacity market enhances reliability by maintaining generators with lower net CONE

within the system, by stabilizing electricity price, and by preventing substantial physical withhold-

ing in a system with limited backup capacity. However, the capacity market may not incentivize

investment in peaking plants, which are essential for system reliability during periods of peak de-

mand. In addition, its efficacy in mitigating physical withholding diminishes in the presence of

congestion or load shedding. We conclude that the capacity market can be a valuable instrument

in improving system reliability, while additional measures to incentivize peaking plants investment

and to alleviate congestion and load shedding issues would further contribute to this objective.

1.2. Literature Review

There have been a variety of optimization-based methods for modeling and studying capacity

payments. For example, Ehrenmann and Smeers (2011) use the duals of investment constraints to

represent capacity payments, which differs from the current practice where the payments are based

on revenue deficit. Levin and Botterud (2015) incorporate capacity payments in their model as fixed

values. Mays et al. (2019) model the capacity payments with financial products such as call options

and futures. Kwon et al. (2018) propose an optimization model for capacity market clearing. While

our modeling setup is also based on market clearing, we strive to provide a detailed model for the

spot market auction in the NYISO capacity market, including features such as a linear demand

curve and net CONE-based offer prices, which enables more accurate and thorough evaluation
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of the capacity market. In addition, the majority of existing literature focuses on numerical case

studies, while we undertake rigorous analytical study to provide novel insights.

An important objective of the capacity market is to ensure sufficient income for generators, yet

the literature provides divided conclusions on whether the capacity market is necessary for this

purpose. Oren (2000) argues that if spot prices in the energy market correctly reflect scarcity rents,

they will be enough to provide sufficient income for generators and thus capacity payments are not

needed. In addition, even if spot prices are not able to incentivize adequate investment, there still

exist more preferable methods than administratively set capacity payments. On the other hand,

Joskow (2008) uses a two-state model to show that the capacity market helps to resolve the “missing

money” problem and thus supports generator profitability. A case study on PJM (Sioshansi 2013)

finds that capacity market revenue in PJM provides enough incentive for both coal and natural

gas generators to remain in the market, but does not provide the incentive for new coal generators

to enter. In this study, utilizing our proposed models for analysis, we provide fresh insights, such

as how net CONE and demand levels affect the revenue and behavior of generators.

While there is a rich literature studying market power in the energy market (Li et al. 2011),

market power in the capacity market is relatively not well-studied. Schwenen (2015) investigates

the strategic bidding behavior in the NYISO capacity market. A model of multi-unit uniform price

auctions is used to explain observed bidding behavior in NYISO. Their work focuses on a setup

where all generators collude to maximize their profit. In contrast, our work uses a leader-follower

game framework and considers additional market features.

The rest of this paper is structured as follows. Section 2 describes modeling setup and proves

some properties of the capacity market. Section 3 explores the interplay between capacity and

energy markets, providing further insights on the influence of the capacity market. Section 4 studies

market outcomes in the presence of market power. Section 5 provides an NYISO-based case study.

All proofs are provided in Section EC.2 of the e-companion.

2. Models and Properties for the Capacity Market

In the capacity market, load-serving entities (i.e., the buyers), known as LSEs, procure capacity to

meet their capacity requirements, while the generators (i.e., the sellers), which sell their capacity,

are required to make the sold capacity is available in the energy market. For this work, we design

our model based on the implementation at NYISO (NYISO 2021). In NYISO, there are 3 types

of capacity auctions: 6-month auction, monthly auction, and spot market auction. To streamline

our models and focus on salient aspects of the capacity market, we only consider the spot market
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auction, which is held 4-5 days prior to the start of the upcoming month, and assume that all

capacity is traded in this auction. For the remainder of the paper, we use the terms “spot market”

and “capacity market” interchangeably.

In this section and in Section 3, we consider market participants as price takers without market

power, with perfect information, and without externality. Thus, the capacity market satisfies the

conditions of perfect competition. Later, in Section 4 we consider the impact of market power.

2.1. Market Clearing in Capacity Market Auction

In this section, we describe the NYISO spot market auction and its market clearing process in

detail. We also present some findings and discussions regarding the market outcome of the spot

market auction.

Before delving into the details of the market setup, we introduce a key concept in the capacity

market: the net CONE (depending on its unit, net CONE can also be called “annual reference

value” or “reference point price”). The net CONE is defined as (the positive portion of) the total

investment and operational costs minus the energy and ancillary service (E&AS) revenues. More

specifically, the total investment and operational costs include the investment cost, fixed operations

and management (O&M) expenditures, and the variable costs of generation; the E&AS revenues

include revenue from the energy market and the ancillary services market. To streamline our model,

we do not consider the ancillary services market or the fixed O&M expenditures. Consequently,

the net CONE can be calculated as follows:

net CONE = (investment cost - energy market profit)+, (1)

where the energy market profit equals energy market revenue minus variable costs of generation,

and (·)+ represents max(0, ·). For this work, all values in (1) are in units of $/MW-day.

We denote the net CONE of generator g as Wg. For a peaking plant, its net CONE is also

denoted as CCONE. Note that a peaking plant, also called a peaker, is a power plant that usually

only operates when there is a high demand. It is often a power plant that can rapidly start up and

it usually has the highest variable costs.

For the demand side of the spot market auction, the NYISO submits monthly bids on behalf

of all LSEs in the form of a demand curve, as demonstrated by the pink curve in Figure 1a. This

demand curve is piecewise-linear, with a flat part and a downward linear part. It is decided by the

following 3 points:
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- (0, P1) is called the maximum clearing point, where P1 is the maximum market clearing price

and it equals 1.5 times the levelized cost (i.e., average lifetime cost per unit) of a peaker. A simple

levelized cost formula is provided in NREL (2023). In our model, the lifetime cost equals the total

investment and variables costs.

- (QCAP,CCONE) is called the reference point, where QCAP is the total capacity requirement of all

LSEs. Let DPeak be the peak load (i.e., highest demand) of the time horizon under consideration,

F TF be the translation factor, and Γ be the installed reserve margin. Then QCAP = (1−F TF )(1 +

Γ)DPeak. To understand the formulation for QCAP, note that (1+Γ)DPeak is the installed capacity

(ICAP) requirement, which is set at a value that is higher than the peak load. This value is then

multiplied by 1− F TF to obtain the unforced capacity requirement, which is the capacity that

generators should relialy supply after accounting for the probability of them being unavailable. We

use Γ = 20.70% and F TF = 8.56% in the case study.

- (Q3,0) is called the zero-crossing point, where Q3 is the minimum quantity beyond which

additional capacity has 0 value. This quantity is higher than QCAP by a percentage FE, i.e. Q3 =

(1 +FE)QCAP. We use FE = 18% in the case study.

To draw the demand curve, we draw a line through (QCAP,CCONE) and (Q3,0), and this line

intersects with the horizontal line that extends from (0, P1). Let the expression for the curve through

(QCAP,CCONE) and (Q3,0) be P =−AQ+Πmax, then we have A= CCONE

FEQCAP and Πmax = 1+FE

FE CCONE.

QCAP r∗ Q3

π∗
CCONE

P1

Q

P

(a)

r∗ Q3

π∗

Πmax

Q

P

(b)

Figure 1 Illustrations of market equilibrium with: (a) original demand curve, (b) linear demand curve.

For the supply side of the spot market auction, the suppliers submit both offer price and offer

capacity, and thus the supply function is a step function, as illustrated by the purple curve in Figure

1a. When a generator has no market power, it bids truthfully with an offer price equal to its net

CONE Wg, which represents the long-run marginal cost of capacity, and an offer capacity equals

its qualified capacity (which will be defined soon). The intersection of supply and demand curves
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in Figure 1a represents the market equilibrium, denoted as (r∗, π∗), where r and π are respectively

variables for cleared capacity and market clearing price in the capacity market.

Remark 1. One might be wondering whether the LSEs are able to procure enough capacity in

the auction to meet their capacity requirement. This is equivalent to asking whether r∗ ≥QCAP,

or equivalently, whether π∗ ≤CCONE. Those conditions are satisfied when there is enough capacity

with an offer price that is no greater than CCONE. Note that as shown in MacDonald (2020) and

also in our case study, the net CONE of the peaker is the highest among all generators (i.e.,

CCONE = maxg∈GWg). Therefore, as long as the market clears, the market clearing price π∗ cannot

be more than CCONE, and thus r∗ ≥QCAP.

Remark 1 indicates that the market equilibrium point cannot lie on the flat piece of the demand

curve, and consequently we can replace the piecewise-linear demand curve with a linear demand

curve through (QCAP,CCONE) and (Q3,0). This approximation simplifies our model and does not

affect the market outcome. We show the market equilibrium with an updated demand curve in

Figure 1b. The demand function is now P =−AQ+ Πmax,0≤Q≤Q3.

To describe the market clearing process, we need some additional notation. For generator g,

let Pmax
g be its capacity and FU

g be its unforced capacity percentage. Then its qualified capacity

for sale equals FU
g P

max
g . We consider both thermal and wind generators. For thermal generators,

FU
g = 1 as they provide “firm” capacity without too much uncertainty; For wind generators, FU

g < 1

as their production levels are less predictable (e.g., in our case study we use FU
g = 0.24 for wind

generators). To ensure that there is enough capacity to fulfill the capacity requirement, we assume∑
g∈G F

U
g P

max
g ≥ QCAP, i.e. the total qualified capacity is no less than the capacity requirement.

Moreover, for generator g let hg be its offer capacity and qg be its capacity sold in the capacity

market, and we have 0≤ qg ≤ hg ≤ FU
g P

max
g .

We can use a greedy algorithm to identify generators that clear the market. First, we sort the

generators according to their offer price Wg in an ascending order. When the capacity market

clears, the generators with the lowest offer prices are selected. Since we have a linear demand

function P =−AQ+Πmax, if the market clears at π∗ =Wĝ with ĝ being the marginal supplier that

clears the market, then the total cleared quantity r∗ =
Πmax−Wĝ

A
. To find ĝ, the algorithm iteratively

checks if the total offer capacity up to generator g exceeds
Πmax−Wg

A
, and stops when it finds the

first generator that does not. This generator is the marginal supplier. The sold capacity qg equals

hg if Wg <Wĝ, and equals 0 if Wg >Wĝ. For the marginal supplier, qĝ = r∗ −
∑ĝ−1

g=1 hg. On the
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other hand, if the algorithm fails to find a marginal generator, then the market does not clear. The

pseudocode of this algorithm is provided in Section EC.1 of the e-companion. This procedure has

a complexity of O(|G|log(|G|)) due to sorting, with G being the set of generators. Note that in our

analysis, we assume all net CONEs are different so there is no tie to break. This assumption is

later relaxed in the case study to provide a more nuanced discussion.

With the market clearing process explained, we now formalize and advance the results of Remark

1 in the following proposition, which provides an expression for the proportion of excess capacity

and shows that it is nonnegative. The excess capacity is 0 only if the peaker clears the market:

Proposition 1. If the capacity market clears, then the proportion that the market clearing quan-

tity exceeds the capacity requirement r∗−QCAP

QCAP = (1− Wĝ

CCONE )FE ≥ 0. In particular, if the marginal

supplier ĝ is the peaker, then r∗ =QCAP.

In practice, if the ISO procures excess capacity, then the excess capacity will be allocated to

each LSE proportionally according to its load-ratio share (i.e., the LSE’s portion of load compared

with the total load).

Although the greedy algorithm is straightforward to implement for obtaining capacity market

outcomes, its utility can be limited when used to analyze those outcomes. Therefore, we propose

a novel QC optimization model for the capacity market in the following section. We additionally

provide a novel mixed-integer programming (MIP) model in Section EC.3 of the e-companion,

which is inspired by the greedy algorithm and offers an alternative perspective to facilitate a

deeper understanding of the market clearing process. Both of those models can be used in other

similarly-structured markets with a linear demand function and a step supply function.

2.2. Quadratic Convex Model for Capacity Market

As previously mentioned, in the absence of market power, the capacity market satisfies the condi-

tions of perfect competition. As a result, the market equilibrium point maximizes social welfare.

Essentially, our QC model is designed to find the social welfare-maximizing price and quantities.

The social welfare equals the sum of producer and consumer surpluses. In Figure 1b, the producer

surplus is shaded in red and equals the total profit of generators, which is expressed as
∑

g∈G(π−

Wg)qg; the consumer surplus is shaded in blue and equals the area of the triangle which is below

the demand curve and above the line for the market clearing price, and it can be calculated by

Πmax−π
2

r. The social welfare thus equals
∑

g∈G(π−Wg)qg + Πmax−π
2

r.

This expression for social welfare is nonconvex because of the bilinear terms πqg and πr. To use

it in our QC model, we need to transform the expression to a convex quadratic form. To do this, we
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substitute π using the demand function π=−A
∑

g∈G qg + Πmax, and substitute
∑

g∈G qg using the

relationship
∑

g∈G qg = r. The updated expression for social welfare is −A
2
r2 +

∑
g∈G(Π

max−Wg)qg.

We propose the following QC model for the capacity market:

(CM-QC):max − A
2
r2 +

∑
g∈G

(Πmax−Wg)qg (2a)

s.t. r=
∑
g∈G

qg (2b)

hg ≤ FU
g P

max
g ∀g ∈ G (2c)

qg ≤ hg ∀g ∈ G (2d)

hg, qg ≥ 0 ∀g ∈ G, (2e)

where the objective (2a) maximizes the social welfare. (2b) defines the cleared capacity r. (2c) and

(2d) respectively set the upper bounds for the offer capacity and the sold capacity.

This is a convex optimization problem because we have a maximization problem and the co-

efficient for the quadratic term in the objective (2a) is negative. In addition, all constraints are

linear. Since (CM-QC) is convex, we are able to use its KKT conditions to represent the market

equilibrium of the capacity market in Section 4.

With this model, we can prove that social welfare is maximized when each generator offers its

entire qualified capacity into the capacity market:

Proposition 2. There exists an optimal solution for the QC model (2) with hg = FU
g P

max
g ,∀g ∈ G.

It is possible that there are multiple optimal solutions for hg. For example, when the optimal

solution for qg is 0, hg can take any value in [0,FU
g P

max
g ] without affecting the optimal value.

Although Proposition 2 relies on the QC model, the conclusion remains true even if the market

equilibrium is obtained with other methods, as all methods lead to the same optimal solution(s).

2.3. Capacity Market and Revenue Adequacy

An important objective of the capacity market is to ensure generators make sufficient income. In

this section, we analyze how the capacity market impacts the profit of generators.

The profit of a generator can be assessed by comparing its capacity market revenue with its net

CONE, without considering the outcome of the energy market. This is because when calculating

the net CONE, we have already deducted energy market profit from its value. Also, as we will

discuss shortly in Section 3.1, when there is no market power, the outcome of capacity market does

not affect the revenue in energy market. Therefore, as long as the net CONE is correctly estimated,
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it should reflect how much additional revenue the generator needs from the capacity market to

become profitable. For example, if a generator’s net CONE equals 0, then it is already profitable

and does not need more revenue.

The following theorem provides expressions for the profits of different types of generators. It

shows that the profitability of a generator depends on how it gets allocated in the capacity market:

Theorem 1. Let Ĝ be the set of generators that are allocated in the capacity market, and let ĝ be

the marginal supplier. Assume that the net CONE is correctly estimated, and Wĝ 6= 0. Then the

profit of generator g is as follows:

(1) If g ∈ Ĝ \ {ĝ}, then its profit equals (Wĝ −Wg)F
U
g P

max
g > 0.

(2) If g is the marginal supplier ĝ, then its profit equals Wĝ(
Πmax−Wĝ

A
−
∑

g∈Ĝ F
U
g P

max
g )≤ 0

(3) If g /∈ Ĝ, then its profit equals −WgF
U
g P

max
g < 0

Therefore, the capacity market does not guarantee the profitability of all generators. This result

also implies that the capacity market incentivizes the investment of technologies with smaller net

CONE, as those generators tend to get allocated in the capacity market. In our case study, wind,

natural gas, and hydro are 3 types of generators with the smallest net CONE.

Remark 2. Since we assume Wĝ 6= 0, the marginal supplier is only profitable when
Πmax−Wĝ

A
−∑

g∈Ĝ F
U
g P

max
g = 0⇒Wĝ =−A

∑
g∈Ĝ F

U
g P

max
g + Πmax, and is not profitable when Wĝ is higher. In

other words, the marginal supplier is only profitable when its net CONE is low enough such that

it is fully allocated.

Since the peaker has the highest net CONE, Theorem 1 also indicates that the peaker is unlikely

to be profitable:

Corollary 1. The peaker is revenue balanced (i.e., its revenue equals cost) only if it is the

marginal generator and QCAP =
∑

g∈G F
U
g P

max
g . Otherwise, it always operates at a loss.

In Table 1 we summarize how the capacity market affects the profitability of generators, where

we list the conditions for generators to be profitable/not profitable, depending on whether it gets

revenue from the capacity market. We highlight the profitability of the peaker, as its availability

is essential for a reliable power grid.

3. Joint Capacity and Energy Markets

The decisions in capacity market and energy market are interdependent. On one hand, procuring

capacity in the capacity auction ensures its availability in the energy market. On the other hand,
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Table 1 Effect of the Capacity Market (CM) on the Profitability of Generators

Profitable Not profitable
No CM Wg = 0 Wg > 0

peaker

CM g ∈ Ĝ \ {ĝ} g /∈ Ĝ
ĝ & Wĝ =−A

(∑
g∈Ĝ F

UPmax
g

)
+ Πmax ĝ & Wĝ >−A

(∑
g∈Ĝ F

UPmax
g

)
+ Πmax

peaker = ĝ & QCAP =
∑

g∈G F
U
g P

max
g peaker = ĝ & QCAP <

∑
g∈G F

U
g P

max
g ; peaker 6= ĝ

generator’s profit in energy market affects its net CONE and consequently influences the outcome

of the capacity market. In this section, our goal is to model and understand the interaction between

capacity and energy markets, which leads to deeper insights into the impact of capacity market on

generator profitability and overall market operation.

3.1. A Modified Energy Market Model

We model the energy market using a modified linearized direct-current optimal power flow

(DCOPF) problem. Unlike the standard linearized DCOPF models, in our model generators do

not need to provide their whole capacity in the energy market, which better reflects the bidding

behaviors in capacity and energy markets. More specifically, the allocated capacity in the capacity

market qg is taken as given in the energy market and is denoted as q̄g. In addition to q̄g, a generator

can provide vg capacity in the energy market. The energy market model is as follows:

(EM):min
∑
t∈T

 ∑
g∈GTher

CV
g pgt +

∑
i∈N

CVOLLpUnmet
it

 (3a)

s.t.
∑
g∈Gi

pgt + pUnmet
it +

∑
(j,i)∈E

fjit−
∑

(i,j)∈E

fijt =Dit ∀i∈N , t∈ T (λit) (3b)

fijt =Bij(θit− θjt) ∀(i, j)∈ E , t∈ T (ιijt) (3c)

fijt ≤ P̄Trans
ij ∀(i, j)∈ E , t∈ T (−ζijt) (3d)

fijt ≥ PTrans
ij ∀(i, j)∈ E , t∈ T (ηijt) (3e)

pgt ≤ q̄g + vg ∀g ∈ GTher, t∈ T (−αgt) (3f)

pgt = FCF
gt (q̄g + vg) ∀g ∈ GRenew, t∈ T (ρgt) (3g)

q̄g + vg ≤ Pmax
g ∀g ∈ G (−φg) (3h)

pgt ≥ 0 ∀g ∈ GTher, t∈ T (3i)

pUnmet
it ≥ 0 ∀i∈N , t∈ T (3j)

vg ≥ 0 ∀g ∈ GTher. (3k)

The Greek letters at the end of each set of constraints are corresponding dual variables, with

ζijt, ηijt, αgt, φg ≥ 0 and the other variables free. The objective (3a) minimizes the total cost, which
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includes the variable production cost CV
g and the value of lost loads (VOLL) CVOLL. In addition,

T is the set of time periods, GTher is the set of thermal generators, and N is the set of buses

(nodes). pgt and pUnmet
it are respectively production level and unsatisfied load. Note that CVOLL is

set to be very high (e.g., $1,000/MW in our model) to limit the chances of supply interruption.

(3b) are power flow constraints where fijt is the power flow, Gi is the set of generators at bus i,

and E is the set of transmission lines. Those constraints ensure that for each hour the load Dit

at each bus is satisfied. (3c) are the Ohm’s law constraints that connect flow with voltage angle

θit, where Bij denotes the susceptance. (3d) and (3e) enforce upper limit P̄Trans
ij and lower limit

PTrans
ij on the transmission lines. (3f) ensure that the thermal generators do not produce more than

their available capacity. (3g) set the production levels for renewable generators, where FCF
gt is the

capacity factor and GRenew is the set of renewable generators. (3h) impose bounds on the available

capacity of generators.

Similar to the case with the capacity market, we can prove that it is always optimal to have

vg = Pmax
g − q̄g in the energy market, as shown in Proposition 3:

Proposition 3. There exists an optimal solution for (3) with vg = Pmax
g − q̄g,∀g ∈ G.

Remark 3. Thanks to Proposition 3, we can decouple the capacity market problem and the energy

market problem. This is because the term q̄g + vg in (3f) and (3g) can be replaced with Pmax
g ,

eliminating q̄g from (EM), and thus (EM) is free of any capacity market decisions.

Therefore, the outcome of the energy market is not affected by the capacity market. As a result,

the capacity market can be viewed as an extra revenue stream for generators, which does not affect

the revenue in the energy market. Note that this result may not be true if there exists market

power, as we show in Section 4.

3.2. Energy Market Equilibrium and Net CONE

In the energy market, the demand is modelled as inelastic and fixed. Thanks to these properties,

a classical result states that the primal and dual solutions of DCOPF constitute a competitive

equilibrium. For our particular DCOPF model, we include the formal statement and proof for a

competitive equilibrium result in energy market as Proposition 4. Let p∗gt, p
Unmet∗
it , and λ∗it respec-

tively be the optimal solutions for pgt, p
Unmet
it , and λit in (EM). Also, we use the notation i(g)

for the bus where generator g is located, which is introduced in the proof and used subsequently

throughout the paper. We can show that:
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Proposition 4. The optimal prices (λ∗it)i∈N , production levels (p∗gt)g∈G, load shedding levels

(pUnmet∗
it )i∈N , and the demand (Dit)i∈N form a competitive equilibrium in the energy market at time

t∈ T .

The energy market model (EM) is a linear program with linear objective and convex feasible

region. Thus, the market equilibrium of the energy market can be represented with KKT conditions

for (EM). In addition to the primal constraints (3b) - (3k), the KKT conditions also contain dual

constraints and complementary slackness constraints. We list some of those constraints below which

are useful in the development of our results:

λi(g),t−αgt ≤CV
g ∀g ∈ GTher, t∈ T (pgt) (4a)

λit ≤CVOLL ∀i∈N , t∈ T (pUnmet
it ) (4b)

(λi(g),t−αgt−CV
g )pgt = 0 ∀g ∈ GTher, t∈ T (4c)

(λit−CVOLL)pUnmet
it = 0 ∀i∈N , t∈ T (4d)

(pgt− q̄g − vg)αgt = 0 ∀g ∈ GTher, t∈ T , (4e)

where (4a) and (4b) are respectively dual constraints corresponding to primal variables pgt and

pUnmet
it . (4c) and (4d) are complementary slackness constraints respectively for dual constraints (4a)

and (4b) and their corresponding primal variables. (4e) enforce complementary slackness between

primal constraints (3f) and their corresponding dual variables.

Interestingly, the presence of the load shedding term pUnmet
it in (EM) provides an upper bound

for the shadow price λit via the dual problem, as indicated by dual constraints (4b). Thus, CVOLL

can also be viewed as a price cap. This upper bound is necessary as the demand is assumed to be

inelastic in the energy market, and thus the electricity price can potentially be infinitely high if

there is no price cap.

Using the KKT conditions, we can prove the following result about a thermal generator’s profit

in the energy market:

Theorem 2. If the thermal generator g bids truthfully in the energy market, then its profit from

the energy market at t is as follows:

(1) If λ∗i(g),t > CV
g , then the profit is (λ∗i(g),t − CV

g )Pmax
g ≥ 0. In particular, if pUnmet∗

i(g),t > 0, then

λ∗i(g),t =CVOLL and the profit is (CVOLL−CV
g )Pmax

g ;

(2) If λ∗i(g),t ≤CV
g , then the profit is 0.
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Remark 4. For a renewable generator, since it does not have any variable cost, its profit in the

energy market is λ∗i(g),tF
CF
gt P

max
g ≥ 0, and the profit equals 0 only if λ∗i(g),t = 0. This contributes to

the observation that wind generators have high energy market profit and low net CONE in our

case study.

A marginal generator in the energy market is the last (i.e., the most expensive) generator to

supply electricity at a bus. We are particularly interested in the profit of a thermal generator when

it is marginal:

Proposition 5. Assuming a thermal generator g̃ is marginal at bus i and time period t:

(1) If the generator does not produce at its full capacity, then its profit from the energy market

at t is 0;

(2) If the generator produces at its full capacity, then its profit from the energy market at t is

between 0 and (CVOLL−CV
g̃ )Pmax

g̃ , and equals (CVOLL−CV
g̃ )Pmax

g̃ when pUnmet∗
i(g̃),t > 0.

With this proposition, we can derive the following useful result for the net CONE of generators

that operate below their full capacity, which are usually generators with high variable costs:

Corollary 2. If a thermal generator g never operates at the full capacity, then its net CONE

equals its investment cost.

Since the peaker is a thermal plant that has the highest variable costs, it is always the marginal

generator when it operates. Therefore, the peaker earns a positive profit in energy market only if

it operates at full capacity. In other words, the peaker benefits greatly from capacity scarcity and

shortages in the energy market. If the peaker never operates at full capacity, then CCONE equals

the peaker’s investment cost.

As a summary, our analysis in Section 2.3 and this section provides insights on the benefits and

limitations of capacity markets. If there is no capacity market, then a generator is profitable only if

its net CONE equals 0, while in practice the majority of generators have a positive net CONE. To

ensure the profitability of more generators without the capacity market, we need to increase the

total profit of generators in the energy market
∑

t∈T (λ∗i(g),t−CV
g )+Pmax

g , which means the market

clearing price λ∗i(g),t needs to be higher in more time periods. This is achieved by setting higher

VOLL and having more time periods of scarcity, which creates undesirable price spikes and reduces

reliability of the system. On the other hand, with the capacity market, generators with lower net

CONE are profitable and can earn a high profit from the capacity payment. In contrast, the peaker

is usually unprofitable, so additional revenue streams may be necessary to keep them in the system.
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4. Capacity Market and Market Power

We study the market power in joint capacity and energy markets with a leader-follower game

framework. The leader is a dominant strategic generator that can submit untruthful bids in both

markets, while the other generators are modeled as a competitive fringe and they submit truthful

bids. After accepting bids from all generators, the ISO runs auctions to clear the market. The mar-

ket clearing process is modeled as a follower. This setup with strategic generator(s) as the leader(s)

and market clearing as the follower is a commonly-used framework for modeling market power in

electricity markets, see for example, Ehrenmann and Neuhoff (2009) which models strategic gen-

erators in energy markets with complex networks, and Zhao et al. (2010) which models strategic

generators in a joint energy-reserve market.

In general, there could be several reasons for a firm to become dominant. For example, it may

have a larger market share, or it is more efficient, or it has better reputation, or it colludes with

other firms to act as a dominant firm (Riyanto 2008). In the energy market, there are usually a few

dominant generators that can influence the market outcome, while the other generators with small

market share are incentivized to bid truthfully (Zhao et al. 2010). The capacity market can also be

dominated by a few large generators (Schwenen 2015). Our model assumes that there is a single

generator that dominates both markets, which is a simplification of real-life strategic behavior in

electricity markets.

The goal of our study is not to provide a comprehensive description of possible strategic behaviors

in the capacity and energy markets. Instead, we would like to showcase the market outcome when

there is a strategic generator. We demonstrate how strategic bidding behavior may interfere with

the intended outcome of the capacity market, which lends insights to the design of market power

mitigation policies (Section 4.1). Our framework also serves as a tool for investigating under what

conditions the capacity market may mitigate market power in the energy market (Section 4.2). In

addition, we propose a trilevel optimization model for the leader-follower game in both markets

(Section 4.3), which enables us to efficiently solve large-scale case studies.

A strategic generator could behave differently when threatened with regulatory intervention

(Ehrenmann and Neuhoff 2009). We do not consider such regulatory threat in this study. Instead,

we focus on market-power-related issues in a deregulated setting.

It could be debatable whether a generator’s truthful bid in the capacity market is net CONE.

If the investment cost is treated as a sunk cost, then a generator’s true cost of providing capacity

equals the going-forward cost, which corresponds to the fixed O&M cost in our setup. Yet, if a
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generator acquired financing through loans and has to repay them over time, or if we consider

its value for resale, then it is reasonable not to view the investment cost as sunk (Tirole 1988).

Without further complicating the discussion, in this work we consider net CONE as the truthful

bid since it is the long-term marginal cost of capacity.

4.1. Market Power in Capacity Market

In this section, we use the leader-follower game to study capacity market outcomes in the presence

of a strategic generator (i.e., the leader), and based on these results, we offer targeted recommen-

dations for market power mitigation.

Since a generator’s total cost in the capacity market (i.e., total net CONE) is a constant

W1F
U
1 P

max
1 , the leader’s profit-maximization problem in the capacity market is equivalent to its

revenue-maximization problem. Consider a leader that does not necessarily bid its true net CONE.

To maximize its revenue in the capacity market, the leader can either bid 0 (or any other prices

lower than the market clearing price) and sell all qualified capacity, or select an offer price that

maximizes its revenue subject to being the marginal supplier. It will never offer a price that is

higher than the market clearing price. We provide conditions where the leader deviates from its

truthful price and evaluate the subsequent market outcomes. Note that in this section, we as-

sume the leader submits untruthful bids only in price and not in quantity, an assumption that is

supported by our case study in Section 5.1.

Before we proceed, we define some additional notation. Let the leader’s index be g = 1 and its

offer price w1. Let ġ and g̈ respectively denote the most expensive generator in Ĝ \{ĝ} and the least

expensive generator in G \ Ĝ, i.e., Wġ = maxi∈Ĝ\{ĝ}Wi and Wg̈ = mini∈G\ĜWi. We use ε to denote

a very small monetary value, e.g., 1 cent, which is used by the leader to undercut other bidders.

We use the prime symbol (′) to denote the outcome of the leader-follower setup when the leader

bids 0. For example, q′1 is the leader’s sold capacity when it bids 0. Similarly, we use the double

prime symbol (′′) to denote the outcome when the leader selects a bid that maximizes its revenue

subject to being the marginal supplier. Additionally, we define B = 1
2
(Πmax−A

∑
i∈Ĝ′′\{1}F

U
i P

max
i ),

a useful expression that appears in Propositions 6 - 8 below.

The following lemma is useful for proving subsequent results. It categorizes the market outcome

when different types of leaders bid 0. It shows that bidding 0 increases revenue for a marginal

supplier with either very high or very low qualified capacity, and for an unallocated supplier.

Lemma 1. If the leader bids 0 in the capacity market, we have the following results for its revenue:
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(1) If the leader g = 1 is in the set Ĝ \ {ĝ} when bidding truthfully, then its revenue does not

change when it bids 0, and the new market clearing price Wĝ′ =Wĝ.

(2) If the leader g = 1 is the marginal supplier when bidding truthfully, then the leader in-

creases revenue by bidding 0 when (i) FU
1 P

max
1 ≥ Πmax−Wġ

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i and FU

1 P
max
1 >

W1
Wĝ′

(
Πmax−W1

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i

)
, in which case the new market clearing price satisfies Wĝ′ ≤Wġ;

(ii) FU
1 P

max
1 <

Πmax−Wġ

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i , in which case the new market clearing price satisfies

Wĝ′ ≥Wg̈.

(3) If the leader g= 1 is in the set G \ Ĝ when bidding truthfully, then it generates more revenue

when bidding 0, and the new market clearing price satisfies Wĝ′ ≤Wĝ.

One insight from Lemma 1 is that, if the marginal supplier chooses to bid 0, then the market

clearing price is more likely to increase when the demand is more elastic (i.e., A is lower), and oth-

erwise it is more likely to decrease. Note that a larger ICAP requirement (1 + Γ)DPeak contributes

to a lower A.

We now investigate under what conditions bidding untruthfully benefits the leader. We consider

3 different cases depending on whether the leader is allocated and whether it is the marginal

supplier when bidding truthfully. Those results are presented in Propositions 6 - 8.

Note that if the leader bids untruthfully and becomes the marginal supplier, there could be

multiple possibilities for the updated set of allocated generators, denoted by Ĝ′′, that could increase

the leader’s revenue. For example, if the leader has a large qualified capacity and is in Ĝ \{ĝ} when

bidding truthfully, and if both FU
ĝ P

max
ĝ and FU

g̈ P
max
g̈ are not too high, then the leader may become

marginal by bidding w′′1 ∈ [Wĝ,Wg̈), in which case Ĝ′′ = Ĝ, or by bidding a price that is slightly

higher than Wg̈, and Ĝ′′ = Ĝ ∪ {g̈}. We denote the set of all possibilities of Ĝ′′ as G.

Proposition 6. If the leader g= 1 is in the set Ĝ \{ĝ} when bidding truthfully, then it can increase

the revenue by bidding a price that is different from its net CONE and become the marginal supplier

if ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ, and if either of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝFU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>WĝF

U
1 P

max
1 .

Intuitively, this result shows that if a leader is allocated and not marginal, then it increases the

revenue from the capacity market by bidding a higher price and becoming the marginal supplier,

if the difference between Wĝ and Wg̈′′ is large, and the total qualified capacity of other allocated

suppliers
∑

i∈Ĝ′′\{1}F
U
i P

max
i is not very high, and itself has a low qualified capacity, and the demand
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is more elastic. Therefore, such a leader is likely to be truthful in a denser market or a market with

relatively high demand, or if it has a very high qualified capacity, or if the demand is less elastic.

In Proposition 6 we implicitly assume that g̈ does exist, i.e., the marginal generator is not the

peaker. Otherwise, the marginal generator has a net CONE equals CCONE, and when the leader

bids higher than CCONE the market will clear below the capacity requirement.

Proposition 7. If the leader g= 1 is the marginal supplier when bidding truthfully, then it could

increase the revenue by either bidding 0 or bidding a different price as the marginal supplier. The

leader prefers to still be the marginal supplier if ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′,

and if either of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 .

The leader’s strategic offer price w′′1 equals either B or Wg̈′′ depending on which price leads to a

higher revenue. The leader bids truthfully only if w′′1 =W1.

Since the chance that w′′1 equals exactly W1 is small, the leader is unlikely to be truthful when

it is the marginal generator.

Similar to Proposition 6, this proposition shows that if the leader is the marginal generator when

bidding truthfully, then the leader is likely to bid 0 in a denser market or a market with relatively

high demand, or if it has a very high qualified capacity, or if the demand is less elastic. Otherwise,

it is more likely to remain the marginal generator.

Proposition 8. If the leader g= 1 is in the set G\Ĝ when bidding truthfully, then it always earns a

higher revenue when bidding untruthfully. More specifically, the leader maximizes its revenue either

by bidding 0 or by becoming the marginal supplier. It becomes the marginal supplier if FU
1 P

max
1 ≥

Πmax−Wĝ

A
−
∑

i∈Ĝ\{ĝ}F
U
i P

max
i and ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′, and if either

of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 .

The conditions in this result are very similar to those in Proposition 7, except for an additional

lower bound on FU
1 P

max
1 . Therefore, if the leader is unallocated when bidding truthfully, it is likely

to bid 0 in a denser market or a market with relatively high demand, or if it has either a very

high or very low qualified capacity, or if the demand is less elastic. Otherwise, it is more likely to

become the marginal generator.
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In contrast to the common belief that a supplier with a larger market share is more likely to be

untruthful, our findings in Proposition 6-8 indicate that the effect of qualified capacity on bidding

behavior can be complicated by market dynamics and generator attributes. Moreover, a small

qualified capacity could also induce strategic bidding behaviors.

We are also interested in how the other generators and the consumers are affected by the behavior

of the leader. If the leader’s strategic behavior (e.g. bidding 0) leads to a lower market clearing

price, then the revenue for all other generators either decreases or remains the same. This is because

when the market clearing price decreases, all previously unallocated and some of the previously

allocated generators are unallocated and have no revenue. For the generators that remain allocated,

they sell capacity at a lower price. On the other hand, the consumer surplus, which corresponds

to the area of the triangle shaded with blue in Figure 1b, increases with a decrease in the market

clearing price. Similarly, if the updated market clearing price increases, then the revenue of all

other generators either increases or remains the same, and the consumer surplus decreases.

It has been observed that in the capacity markets of PJM and ISO-NE, the cleared capacity

is often well above the target quantity (Bialek and Unel 2018). According to Proposition 1, such

excessive capacity procurement is caused by a low market clearing price π =Wĝ. In terms of our

leader-follower setting, a drop in market clearing price happens when the leader is either marginal

or unallocated, and maximizes its revenue by bidding a lower price than its net CONE. We also

observe this in some of our numerical examples in Section 5.1, where leaders bid lower prices

to increase their capacity market revenue. The resulting low clearing price increases consumer

surplus, but it also decreases the revenue of some generators and thus may undermine power system

reliability in the long run.

Remark 5 (Market Power Mitigation). In sum, in a market with high demand, there are

more fully allocated generators, and thus a strategic generator is more likely to bid truthfully. In

such a market, or if the market is dense or the demand is less elastic, a marginal or unallocated

strategic generator is likely to bid 0, and thus the policy maker may need to enforce market power

mitigation policy such as price floors (we will address this shortly) for some strategic generators

with high net CONE to ensure truthful bidding. In contrast, when the market is sparse, has high

redundant capacity, and with more elastic demand, the strategic generator is more likely to be

a price setter. It is also more likely to become unallocated. In this case, the policy maker could

impose both price floors and price caps for generators with relatively high net CONE, and price

caps for low net CONE generators with a low qualified capacity.
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In practice, to mitigate the market power in capacity markets that leads to low bidding and

market clearing prices, ISOs impose price floors for certain types of generators and require them

to bid no less than their net CONE. Such rules, called Minimum Offer Price Rules (MOPR), are

criticized by FERC as being discriminatory, and MOPR have undergone several reforms throughout

the years. We refer interested readers to Macey and Ward (2021) for more details on the history

of MOPR in capacity market.

4.2. Capacity Market and Physical Withholding

We now use the leader-follower game framework to investigate how the capacity market could

mitigate market power in the energy market. Specifically, we focus on the type of market power in

the energy market called physical withholding. By physical withholding, a generator holds back its

available capacity in the energy market, which raises the market clearing price. Physical withholding

is undesirable as it creates scarcity and undermines the reliability of power grids.

In this section, we only consider a thermal generator acting as the leader, as the uncertain

and non-dispatchable nature of renewable production makes it hard for a wind generator to bid

strategically in the energy market. We assume the leader bids 0 in the capacity market, as this is

usually the best strategy for the leader in our case study (see Section 5.1). Note that if instead

the leader is truthful in the capacity market, then the results in this section are still valid as

long as the leader is fully allocated in the capacity market. In addition, in this section we do not

consider untruthful bids in marginal cost (in Section 5.2 we provide numerical results without this

restriction). In practice, ISOs impose market seller offer caps to limit the bidding prices in the

energy market, so generators cannot raise the market clearing price with very high bids. We use

the prime sign (′) to denote the outcome of the strategic setup.

Since we assume the leader bids 0, without physical withholding the leader’s capacity market

revenue is π∗Pmax
1 (we drop FU

1 as it equals 1 for thermal generators). If the leader seeks to increase

its revenue in the energy market by physical withholding, it bids h′1 <P
max
1 in the capacity market

and gets allocated with q∗
′

1 = h′1. The corresponding revenue is π∗
′
q∗
′

1 with π∗
′ ≥ π∗.

In the energy market, by Theorem 2 when the leader is truthful its total profit from the energy

market is
∑

t∈T̂ (λ∗i(1),t −CV
1 )Pmax

1 , where T̂ is the set of time periods with λ∗i(1),t >CV
1 , i.e., time

periods such that the leader earns a positive profit.

If we have a connected power network without congestion, i.e., power flow in all transmission lines

are below their capacity, then energy market price does not decrease when there is withholding:
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Proposition 9. If the network is connected and without congestion, then the value of λ∗it is the

same at all buses for each time period. If there is physical withholding by the leader, then λ∗
′
i(1),t ≥

λ∗i(1),t,∀t∈ T .

We assume for now that the network is connected and without congestion, and we will discuss

what happens without those assumptions later in this section. Since when the leader withholds

capacity the new energy market clearing price λ∗
′
s,i(1),t ≥ λ∗s,i(1),t and thus T̂ ⊆ T̂ ′ . By withholding,

the leader’s profit increases because of increased energy market clearing prices. The market clearing

price in the capacity market may also increase and raise the revenue. The total addition in capacity

market revenue and energy market profit because of higher prices is as follows:

(π∗
′
−π∗)q∗

′

1 +
∑

t∈T̂ ′\T̂

(
λ∗
′

i(1),t−CV
1

)
(q∗
′

1 + v∗
′

1 ) +
∑
t∈T̂

(
λ∗
′

i(1),t−λ∗i(1),t

)
(q∗
′

1 + v∗
′

1 ), (5)

where the first term is the increased revenue in the capacity market. The second term is the increase

from additional time periods with positive profits in the energy market. The third term is the

additional revenue during previously profitable time periods in the energy market.

On the other hand, by withholding the leader could also lose some capacity market revenue and

energy market profit because of decreased capacity, which can be calculated as:

π∗(Pmax
1 − q∗

′

1 ) +
∑
t∈T̂

(λ∗i(1),t−CV
1 )(Pmax

1 − q∗
′

1 − v∗
′

1 ), (6)

where the first term is the lost revenue in the capacity market, and the second term is the lost

profit in previously profitable time periods.

In our case study (Section 5.2) we observe that v∗
′

1 = 0 and π∗
′
= π∗ for all instances, indicating

that the leader does not bid additional capacity in the energy market when withholding, and that

withholding does not affect capacity market clearing price. Assuming those are always true, we

simplify (5) and (6) respectively to Gain and Loss, as defined below:

Gain :=
∑

t∈T̂ ′\T̂

(
λ∗
′
i(1),t−CV

1

)
q∗
′

1 +
∑
t∈T̂

(
λ∗
′
i(1),t−λ∗i(1),t

)
q∗
′

1 (7a)

Loss := π∗(Pmax
1 − q∗

′

1 ) +
∑
t∈T̂

(λ∗i(1),t−CV
1 )(Pmax

1 − q∗
′

1 ). (7b)

When there is no capacity market, the loss is instead Loss :=
∑

t∈T̂ (λ∗i(1),t−CV
1 )(Pmax

1 − q∗′1 ).

Without the capacity market, the leader withholds its capacity if Gain>Loss, and the capacity

market reduces such withholding if Gain<Loss. Therefore, the capacity market is more effective



23

at reducing withholding if the revenue π∗(Pmax
1 − q∗′1 ) is high. In particular, π∗ is high when the

peak load is relatively high compared with total available capacity, while a high Pmax
1 −q∗′1 indicates

that a large capacity is withheld. We summarize this result in the following remark:

Remark 6. The capacity market is more effective at reducing physical withholding in the energy

market when the system has lower redundant capacity at the peak hour, or when the withheld

capacity is higher.

Physical withholding can be particularly disruptive if a generator withholds a large amount of

capacity in a system that has little backup capacity. Our findings underscore the effectiveness of

capacity markets in mitigating withholding during those challenging circumstances.

When there is congestion in the network, it is observed that with a small increase in load the

market clearing price at certain buses could decrease. However, in general when there is an increase

in load or a decrease in available capacity, the market clearing prices usually do not decrease and

thus λ∗
′
i(1),t ≥ λ∗i(1),t is still usually true. In addition, congestion or disconnection in a network reduces

available capacity at some buses, which could lead to higher λ∗
′
i(1),t and increased Gain, and thus

higher revenue from the capacity market is needed to prevent withholding.

The capacity market also becomes less effective at mitigating market power if withholding creates

more time periods with load shedding, as the value of Gain can increase drastically when the energy

market price equals CVOLL. In particular, since congestion could reduce available capacity and

create more scarcity, there could be more time periods with load shedding if withholding happens

in a congested network. Therefore, when combined with measures that mitigate congestion and

loading shedding, the capacity market can be more effective in reducing physical withholding.

Finally, note that since CVOLL is higher in energy-only market compared with capacity market

($9,000/MWh in ERCOT versus $3,500/MWh in Midwest ISO (Harvey 2020)), the energy-only

market is more vulnerable to physical witholding, as the leader can earn higher profits by creating

time periods with load shedding, without concerns about revenue loss in the capacity market.

4.3. Trilevel Optimization for the Leader-Follower Game

We now propose an optimization model that facilitates large-scale case studies of market power,

which allows us to numerically illustrate and extend the analytical results in Section 4.1 and Section

4.2. More specifically, we propose a trilevel optimization model for a leader-follower game in joint

capacity and energy markets, which is based on the capacity market and energy market models

developed in Section 2 and Section 3. In the upper-level, the leader maximizes its profit in both
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markets. The middle level and lower level are respectively the ISO’s social welfare maximization

problem in the capacity market and the energy market. Note that when modeling market power in

the capacity market, we are constrained to using the QC model (2), while the MIP model (EC.6)

is not suitable for this application, as the QC model’s convexity enables us to represent the market

equilibrium using KKT conditions in the middle level. In what follows, we present the leader’s and

follower’s problems in both capacity and energy markets.

Leader’s problem in the capacity market (upper-level): In the capacity market, the leader decides

on its offer capacity h1 and offer price w1. Since the cleared capacity r is determined in the follower’s

problem and is not a decision made by the leader, we use the notation r̄ to highlight the fact that

it is treated as a constant in the leader’s problem. Similarly, the sold capacity of the leader (q1) is

also an external decision for the leader’s problem. We formulate the leader’s profit-maximization

problem as follows. Note that since the leader’s total cost in the capacity market is a constant

W1F
U
1 P

max
1 , we drop it from the objective:

(CM-Leader):max (−Ar̄+ Πmax)q̄1 (8a)

s.t. h1 ≤ FU
1 P

max
1 (8b)

h1,w1 ≥ 0, (8c)

where −Ar̄+Πmax is from the demand function and equals the market clearing price of the capacity

market.

Leader’s problem in the energy market (upper-level): In the energy market, the leader maximizes

its profit by choosing its offer capacity v1 and offer price c1, as shown below:

(EM-Leader):max
∑
t∈T

(λ̄i(1),t−Cv
1 )p̄1t (9a)

s.t. q̄1 + v1 ≤ Pmax
1 (9b)

c1 ≤CVOLL− ε (9c)

c1, v1 ≥ 0. (9d)

Note that for the leader, variables λi(1),t, p1t, and q1 are external decisions. We explicitly impose

the price cap in (9c), which prevents the leader from bidding an unrealistically high price c1 when

the load is very high. ε in (9c) is a very small number and we use ε= 1 in our experiments.

Follower’s problem in the capacity market (middle-level): The follower’s problem in the capacity

market models market clearing, and it takes the leader’s decisions as given. To formulate the
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problem, we modify the (CM-QC) formulation by treating h1 and w1 as constants. In addition,

all non-strategic generators, which are modelled as a competitive fringe, offer their entire qualified

capacity and thus, as indicated by Proposition 2, the social welfare is maximized:

(CM-Follower):max − A
2
r2 + (Πmax− w̄1)q1 +

∑
g∈G\{1}

(Πmax−Wg)qg (10a)

s.t. (2b) (10b)

0≤ qg ≤ FU
g P

max
g ∀g ∈ G \ {1} (10c)

0≤ q1 ≤ h̄1. (10d)

Follower’s problem in the energy market (lower-level): The follower’s problem in the energy

market again takes the ISO’s perspective, and treats the leader’s decisions and the capacity market

outcome as given. It is adapted from the (EM) formulation by treating c1, q1, and v1 as constants,

and letting all non-strategic generators offer their entire qualified capacity. As explained in Section

4.2, we only consider thermal generators as the leader in the energy market:

(EM-Follower):min
∑
t∈T

c̄1p1t +
∑

g∈GTher\{1}

CV
g pgt +

∑
i∈N

CVOLLpUnmet
it

 (11a)

s.t. (3b)− (3e), (3i), (3j) (11b)

p1t ≤ q̄1 + v̄1 ∀t∈ T (11c)

pgt ≤ Pmax
g ∀g ∈ GTher \ {1}, t∈ T (11d)

pgt = FCF
gt P

max
gt ∀g ∈ GRenew, t∈ T . (11e)

We formulate the trilevel model for the leader-follower game by putting together (8) - (11): The

upper-level maximizes the leader’s total profit by combining the leader’s problems (8) and (9); The

middle-level is the ISO’s market equilibrium problem for the capacity market (CM-Follower); The

lower-level is the ISO’s market equilibrium problem for the energy market (EM-Follower).

To solve the trilevel model, we reformulate it as a mathematical program with equilibrium

constraints (MPEC) problem. In the MPEC reformulation, the upper-level model is kept in its

original form, while the middle- and lower-level models are replaced with their KKT conditions:

max (8a) + (9a) (12a)

s.t. (8b), (8c), (9b)− (9d) (12b)

KKT conditions of (CM-Follower) and (EM-Follower). (12c)
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MPEC is NP-hard due to the nonconvex complementary slackness constraints in KKT conditions,

which make it challenging to directly solve large-scale instances such as our NYISO case study using

commercial solvers. Instead of solving (12) directly, we reformulate it into simpler structures that

are readily handled by a state-of-the-art bilevel optimization software package. More specifically,

we reformulate and decompose the trilevel MPEC model to 2 bilevel models and solve them with

BilevelJuMP.jl (Dias Garcia et al. 2022). Note that to solve the bilevel problem, the BilevelJuMP.jl

package uses several ways to reformulate the complementary slackness constraints. We choose the

SOS1 mode in the package, which uses special ordered set of type one (SOS1) for reformulation.

To reformulate the trilevel model to bilevel models, we merge its middle level and lower level.

The merge is complicated by the middle-level variable q1 because it is treated as given in the

lower level. In what follows, we make q1 an upper-level decision by leveraging our insights into the

capacity market, enabling the merge of the middle and lower levels.

As we explain in Section 4.1, there are only two possible outcomes in the capacity market with

a revenue-maximizing leader: the leader either bids w1 = 0, or it becomes the marginal supplier.

Therefore, the value of q1 can be controlled by the leader’s decision in the upper-level. By reformu-

lating (CM-Leader) to reflect one of the two possible decisions of the leader, q1 essentially becomes

an upper-level variable.

More specifically, when the leader bids w1 = 0, it gets fully allocated, and we can add constraints

w1 = 0 and q1 = h1 to (CM-Leader). On the other hand, if the leader is the marginal supplier, we

add the following constraints to (CM-Leader):

w1 =−Ar̄+ Πmax (13a)

q1 = r̄−
∑

g∈G\{1}

q̄g (13b)

q1 ≤ h1, (13c)

where (13a) is the demand curve with the market clearing price equals w1. (13b) defines the

allocated capacity q1. (13c) is the upper bound of q1.

With the reformulation of (CM-Leader), q1 becomes an upper-level variable. Subsequently, we

can replace q̄1 with q1 in (9b), replace q1 with q̄1 in (10a), and remove the redundant constraints

(10d) from (CM-Follower). Now the middle- and lower-level problems can be merged. To find the

leader’s optimal strategy, we solve the bilevel models for both possible outcomes in the capacity

market, and the model with the higher optimal objective provides the optimal strategy.
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Note that the bilevel reformulations can still be time-consuming to solve for some instances.

Inspired by Kleinert et al. (2021), we derive a valid inequality based on weak duality to speed up

the solution of the bilevel models. Different from the linear valid inequality in Kleinert et al. (2021),

our valid inequality contains nonlinear terms, as it directly enforces (EM-follower)’s bilinear primal

objective (11a) to be no less than its dual objective. This valid inequality is helpful in closing

optimality gaps for a few instances in our case study. In Table EC.3, we provide a comparison

of computation time without and with valid inequalities (No ineq. and With ineq., respectively)

for selected instances in the case study, which shows that the valid inequality can be helpful in

speeding up the computation and even in closing the optimality gap for some instances. We refer

the readers to Section 5 for details of those instances and experiment setup.

5. NYISO Case Study

We have shown that the capacity market is susceptible to market power, and that it can mitigate

physical withholding in the energy market. We now conduct a case study based on the NYISO

system (Liang et al. 2022) to illustrate those results. Furthermore, the case study facilitates a

comparison of the diverse outcomes under various types of leaders and demand levels. We also

experiment with additional strategic setups in the energy market, such as untruthful offer price

and a highly congested network, and investigate the role of capacity market in such settings.

We use a zonal representation of the NYISO system with 12 zones, which is used in practice

for computing energy prices. In the data, each zone is represented by a bus and there are 13

transmission lines in the network. The system is populated with 362 thermal generators and 33

wind farms. The load and wind data are from a day in August. All optimization models are solved

using Gurobi 10.0 (Gurobi Optimization, LLC 2022) with the Julia JuMP (Dunning et al. 2017)

interface. We use a MacBook Pro with Apple M1 Pro chip, which has an 8-core CPU and 16 GB

memory.

5.1. Case Study: Market Power in the Capacity Market

In this section, we focus on market power in the capacity market. We show the leader types and

demand levels that make the capacity market susceptible to market power. Furthermore, we assess

the impact of market power by comparing various metrics (including generators’ revenue, consumer

surplus, and market clearing price) under scenarios both with and without market power.

With market power, we pick different types of generators as the leader, including natural gas

(NG), coal, nuclear, residual fuel oil (RFO), hydro, wood, and wind. In Table 2, we provide the

marginal cost, the net CONE, and the qualified capacity of the leaders. Note that in practice,
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the net CONE values in different ISOs vary depending on parameter assumptions. For example,

wind has a low net CONE in ISO-NE and a high net CONE in PJM. Our net CONE values are

calculated based on our data. We observe that RFO is the peaker with the highest variable cost,

and it also has the highest net CONE, while wind has 0 variable cost, and its net CONE is also 0.

Table 2 Parameters of the Leaders

NG Coal Nuclear RFO Hydro Wood Wind
CV

g ($/MWh) 21.1 13.1 4.1 67.6 14.9 35.0 0.0
Wg ($/MW-day) 199.6 540.2 810.6 1246.5 420.9 752.1 0.0
FU

g P
max
g (MW) 621.0 655.1 1299.0 901.8 250.0 42.1 35.9

For different types of generators and various demand levels, we solve MPEC models of the leader-

follower game, which are similar to problem (12) except that they only include capacity market

decisions and constraints. For comparison, we also solve (CM-QC) for the setting without market

power with the same set of parameters. All instances are solved to optimality within 6 minutes.
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Figure 2 Difference between strategic setting and truthful setting (the former minus the latter) in the

capacity market for (a) leader’s capacity market revenue, (b) market clearing price.

Figure 2 displays comparisons between the 2 settings for the leader’s revenue and the market

clearing price. The horizontal axes represent varying levels of demand, from 60% to 100% of the

original peak demand, increasing in steps of 10%. Figure 2a illustrates the difference in leader’s

revenue between strategic and truthful settings. The generators with higher qualified capacity and

higher net CONE (e.g., RFO, Nuclear, Coal) are more likely to benefit from exercising market

power. Figure 2b shows that when the leader exercises market power, the market clearing price

either decreases or stays unchanged. If the price is unchanged, it is because the leader breaks ties

with other generators having the same net CONE by marginally undercutting them. We observe
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that nonzero difference, which indicates altered market outcome due to market power, happens

less often when the demand is higher, and when the leader has lower net CONE. This can be

explained by our results in Section 4.1: generators are more likely to bid truthfully when they are

fully allocated, and thus high demand and low net CONE facilitates truthful bidding.

Lemma 1 indicates that if the leader is a marginal supplier, the market clearing price could either

increase or decrease when the leader bids 0, and the price decreases when the leader has a large

qualified capacity. Our observation in the case study is consistent with this result: The nuclear

plant has a large qualified capacity and is marginal when demand level is 80%, and the market

clearing price decreases when it bids 0.
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Figure 3 Difference between strategic setting and truthful setting (the former minus the latter) in the

capacity market for (a) total revenue of generators, (b) consumer surplus.

Figure 3a shows the difference in generators’ total revenue, while Figure 3b shows the difference

in consumer surplus. Both values are directly impacted by the market clearing price and thus show

the same pattern of change as Figure 2b. When the nuclear plant is the leader, it tends to change

total revenue and consumer surplus more than other types of leaders. This is probably because the

nuclear plant has very large capacity and thus has a larger impact when exercising market power.

Figure 4 shows the difference between the market clearing price and the leader’s net CONE in

the strategic setting, for different leaders and demand levels. Since in our results leaders are always

fully allocated when exercising market power, a nonnegative difference indicates that the leader is

profitable. Generators with a low net CONE (e.g. wind and NG) are always profitable even if they

are not strategic, while the peaker (RFO) is only profitable when the demand is very high.

Our results suggest that the ISO needs to be vigilant about strategic bids from generators with

high net CONE, especially if those generators also have high qualified capacities. When the peak
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Figure 4 Capacity market clearing price minus leader’s net CONE in strategic setting.

load is low, market mitigation policy (such as price floors) targeting those generators could be used

to prevent them from bidding low prices and distorting the market outcome.

5.2. Case Study: Capacity Market and Market Power in Energy Market

We now demonstrate the capacity market’s impact on the leader’s strategic behavior in the energy

market. We measure the market power by comparing the leader’s profit from the energy market

under different market settings. More specifically, we compare the following settings:

(1) “S. Both”: Strategic setting with both capacity and energy markets.

(2) “noCM”: Strategic setting with only the energy market.

(3) “True”: Truthful setting with both capacity and energy markets.

Similar to the previous section, for each setting we compute the leader’s energy market profit

for different types of leaders and demand levels. We also consider two congestion levels, where the

high congestion level reduces the original transmission line limit (i.e., the normal congestion) by

one third. All experiments in this section are run with a 20-minute time limit.

First, we focus on physical withholding and do not consider untruthful bids in marginal cost,

which is the same setup as in our analysis for Section 4.2. We show the results in Figure 5 for

the normal congestion level. We consider different types of thermal generators as the leader, along

with demand levels ranging from 60% to 120% of original peak load, with increments of 10%.

Figure 5a reports the difference in leader’s profit under “S. Both” and “noCM” settings (“S. Both

vs. noCM”), which shows the extra profit the leader gets by exercising market power when the

capacity market is absent. Figure 5b reports the difference in leader’s profit under “S. Both” and

“True” settings (“S. Both vs. True”), where a non-zero value indicates that the capacity market is

unable to completely eliminate all market power. In Section EC.4 of the e-companion, we present

Table EC.1 which includes detailed data corresponding to Figure 5, as well as the results for the

same comparisons at a high congestion level.
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Figure 5 Comparison of the leader’s profit from the energy market (with normal congestion) between the

following settings (the former minus the latter): (a) Under strategic setting, joint capacity and

energy markets vs. only energy market. Non-zero values indicate reduced physical withholding

due to capacity market; (b) For joint capacity and energy markets, strategic setting vs. truthful

setting. Non-zero values indicate physical withholding.

Note that for one of the instances, namely the instance with Hydro being the leader at an 80%

demand level and under the high congestion “noCM” setting, we use the weak duality-based valid

inequality to help close the optimality gap (see Table EC.3 in the e-companion). In addition, there

are 3 instances (noted with ∗ in Table EC.1) not solved to optimality under “noCM” setting with

high congestion, which lead to possibly underestimated differences between “S. Both” and “noCM”

settings. Note that for those suboptimal instances, the optimality gaps at termination are usually

small. Also, the solver usually quickly identifies high-quality solutions for our instances, with slow

convergence mainly due to difficulty in bound verification.

As shown in Figure 5a, with the capacity market, the leader gets a lower profit from the energy

market, which indicates a reduced level of physical withholding. In addition, Figure 5b shows that

for most cases, the existence of the capacity market ensures that the leader bids truthfully in

capacity in the energy market. The capacity market is more effective in ensuring truthful bidding

at higher demand levels, where the leader earns higher capacity market revenue. This observation

is consistent with our finding in Remark 6.

With more congestion in the network, physical withholding becomes more frequent if there is no

capacity market, as shown in Table EC.1. Also, the leader earns a higher profit via withholding, and

more expensive generators, such as Wood and RFO, start to exercise market power. The capacity

market is still effective in preventing many cases of withholding.

Next, we relax the assumption that the leader bids truthfully in marginal cost. We include

the results in Table EC.2 of the e-companion, which show that the leader makes more profit by
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exercising market power. Again, with more congestion the problem of market power becomes more

prominent. While the capacity market can still reduce market power, it becomes less effective.

In sum, the capacity market is effective in reducing market power, especially physical withhold-

ing, in the energy market. Yet it does not eliminate market power. Additional measures, such as

reducing congestion and incentivizing truthful bids in marginal cost, can be helpful as well.

6. Conclusion

In this work, we assess the capacity market’s impact on generators’ revenue and system reliability

via a rigorous analytical framework, featuring a new perspective that considers revenue in joint

capacity and energy markets, novel equilibrium-based and game-theoretic models depicting market

clearing and market power, and innovative solution technologies for large-scale case studies. By

utilizing this framework, our analysis delivers valuable insights to both market participants and

regulators. We show that the capacity market’s effectiveness in enhancing system reliability depends

on various factors, including the net CONE of generators, the demand level and elasticity, and the

density of the market. Our results confirm that the capacity market is helpful in ensuring resource

adequacy. Furthermore, we recommend additional measures that could mitigate market power and

aid the capacity market in supporting optimal generation portfolio.

There are several promising directions for future research. While we have not explored the impli-

cations of additional capacity market features, such as the interaction between different capacity

auctions, the impact of transmission congestion, and the incorporation of energy storage, it re-

mains essential to understand them. Our approach and findings provide a foundation upon which

future endeavors can build to study those features. More broadly, there are a multitude of electric-

ity market policies used in practice, and subjecting them to thorough economic analysis without

over-simplifications can greatly enhance our understanding of their implications. By introducing an

analytical framework for the capacity market and demonstrating its usefulness, we view our efforts

as a step towards this goal. Finally, further research on mechanism design that incentivizes optimal

investment and allocation is needed, as it is crucial to the long-term sustainability of electricity

markets, as well as other markets characterized by substantial upfront investments.
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e-Companion

EC.1. Greedy Algorithm for Clearing the Capacity Market

Algorithm 1: Greedy Algorithm for Clearing the Capacity Market

Initialization: Sort the generators in an ascending order of Wg. Let q= h1 and g= 1;

while
Πmax−Wg

A
> q and g < |G| do

g= g+ 1;
q= q+hg;

end

if
Πmax−Wg

A
≤ q then

π∗ =Wg;

r∗ =
Πmax−Wg

A
;

ĝ= g;
g′ = 1;
for g′ ≤ |G| do

if g′ < g then
qg′ = hg′ ;

else if g′ = g then

qg′ = r∗−
∑g′−1

i=1 hi;
else

qg′ = 0;
end
g′ = g′+ 1;

end
return ĝ, π∗ and qi,∀i∈ G;

else
The capacity market fails to clear;

end

If the market clears, this algorithm returns the index of the marginal supplier, the market clearing

price, and the sold capacity of all suppliers.

EC.2. Proofs

Proposition 1. The proportion that the market clearing quantity exceeds the capacity requirement

r∗−QCAP

QCAP = (1− Wĝ

CCONE )FE ≥ 0. In particular, if the marginal supplier ĝ is the peaker, then r∗ =

QCAP.

Proof. of Proposition 1 We can directly calculate the proportion:

r∗−QCAP

QCAP
=

Πmax−Wĝ

AQCAP
− 1

=
( 1+FE

FE CCONE−Wĝ)F
EQCAP

QCAPCCONE
− 1

= (1− Wĝ

CCONE
)FE,
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where the second equality is because A= CCONE

FEQCAP and Πmax = 1+FE

FE CCONE. The last expression is

nonnegative because CCONE = maxg∈GWg.

If ĝ is the peaker, then Wĝ =CCONE, thus r∗−QCAP

QCAP = 0⇒ r∗ =QCAP. �

Proposition 2. There exists an optimal solution for the QC model (2) with hg = FU
g P

max
g ,∀g ∈ G.

Proof. of Proposition 2 Let fCM(x) denote the objective function in (2a) with x representing

all variables of (CM-QC) excluding hg,∀g ∈ G. Let FCM be the projected feasible region of variables

x in (2) obtained by replacing the right-hand side of (2d) with FU
g P

max
g . Then any projected feasible

region FCM ′ obtained by replacing the right-hand side of (2d) with values less than FU
g P

max
g ,∀g ∈

G′ ⊆ G and equal FU
g P

max
g ,∀g ∈ G \ G′ is a subset of FCM and we have max{fCM(x)|x ∈ FCM} ≥

max{fCM(x)|x ∈ FCM ′}. Therefore, there exists an optimal solution for (2) with x ∈ FCM and

hg = FU
g P

max
g ,∀g ∈ G. �

Theorem 1. Let Ĝ be the set of generators that sold their capacity in the capacity market, and let

ĝ be the marginal supplier. Assuming the net CONE is correctly estimated, and Wĝ 6= 0. Then the

profit of generator g is as follows:

(1) If g ∈ Ĝ \ {ĝ}, then its profit equals (Wĝ −Wg)F
U
g P

max
g > 0.

(2) If g is the marginal supplier ĝ, then its profit equals Wĝ(
Πmax−Wĝ

A
−
∑

g∈Ĝ F
U
g P

max
g )≤ 0

(3) If g /∈ Ĝ, then its profit equals −WgF
U
g P

max
g < 0

Proof. of Theorem 1 Proposition 2 indicates that one social welfare-maximization solution is

for generators to bid hg = FU
g P

max
g . Using the market clearing quantities provided in the greedy al-

gorithm of Section EC.1, when the market clears the generator g ∈ Ĝ \{ĝ} sells its qualified capacity

hg = FU
g P

max
g , and the marginal generator sells r∗−

∑ĝ−1

g=1 hg =
Πmax−Wĝ

A
−
∑

g∈Ĝ\{ĝ}F
U
g P

max
g .

For g ∈ Ĝ \ {ĝ}, its revenue from the capacity market is WĝF
U
g P

max
g , and its total net CONE is

WgF
U
g P

max
g , which means its profit is (Wĝ−Wg)F

U
g P

max
g . Since g is not marginal, its net CONE is

less than Wĝ (we had assumed that all net CONEs are different). Thus, the profit of g is strictly

positive.

For ĝ, its profit equals Wĝ(
Πmax−Wĝ

A
−
∑

g∈Ĝ\{ĝ}F
U
g P

max
g ) − WĝF

U
ĝ P

max
ĝ = Wĝ(

Πmax−Wĝ

A
−∑

g∈Ĝ F
U
g P

max
g ). Since the market clearing quantity is no more than

∑
g∈Ĝ F

U
g P

max
g , the profit of ĝ

cannot be positive.

For g ∈ G \ Ĝ, it does not sell any capacity and thus does not have any revenue from the capacity

market. Therefore, its profit equals the negative total net CONE: −WgF
U
g P

max
g . Since Wg >Wĝ > 0,

this value is strictly negative. �
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Corallary 1. The peaker is revenue balanced (i.e., its revenue equals cost) only if it is the

marginal generator and QCAP =
∑

g∈G F
U
g P

max
g . Otherwise, it always operates at a loss.

Proof. of Corallary 1 When the peaker is the marginal generator, π∗ =Wĝ =CCONE and r∗ =

QCAP. Thus, the capacity it sells is QCAP−
∑

g∈G\{ĝ}F
U
g P

max
g , as all other generators have lower net

CONEs and should sell all their capacities. The peaker is revenue balanced only when it sells all

its capacity, i.e. when QCAP−
∑

g∈G\{ĝ}F
U
g P

max
g = FU

ĝ P
max
ĝ ⇒QCAP =

∑
g∈G F

U
g P

max
g . Otherwise, it

has a negative profit.

If the peaker is not the marginal generator, then it does not sell any capacity because it has the

highest net CONE. Thus, in this case it also has a negative profit. �

Proposition 3. There exists an optimal solution for (3) with vg = Pmax
g − q̄g,∀g ∈ G.

Proof. of Proposition 3 The proof is similar to that of Proposition 2. Let fEM(x) denote the

objective function in (3a) with x representing all variables of (EM) excluding vg,∀g ∈ G. Let FEM

be the projected feasible region of variables x in (3) obtained by replacing the terms vg in the

right-hand side of (3f) and (3g) with Pmax
g − q̄g. Then any projected feasible region FEM ′ obtained

by replacing vg in the right-hand side of (3f) and (3g) with values less than Pmax
g − q̄g,∀g ∈ G′ ⊆

G and equal Pmax
g − q̄g,∀g ∈ G \ G′ is a subset of FEM and we have min{fEM(x)|x ∈ FEM} ≤

min{fEM(x)|x ∈ FEM ′}. Therefore, there exists an optimal solution of (EM) with x ∈ FCM and

vg = Pmax
g − q̄g,∀g ∈ GTher. �

Proposition 4. The optimal prices (λ∗it)i∈N , production levels (p∗gt)g∈G, load shedding levels

(pUnmet∗
it )i∈N , and the demand (Dit)i∈N form a competitive equilibrium in the energy market at time

t∈ T .

Proof. of Proposition 4 We show that under the prices and quantities (λ∗it)i∈N , (p∗gt)g∈G,

(pUnmet∗
it )i∈N , and (Dit)i∈N , the market is cleared at t∈ T , and each market participant maximizes

their utility, which means those prices and quantities constitute a market equilibrium (Mas-Colell

et al. 1995).

First, we show that the market is cleared at t ∈ T . Summing up (3b) over i ∈N and move the

terms for pUnmet
it to the right-hand side, we get the following equation:

∑
g∈G

pgt =
∑
i∈N

Dit−
∑
i∈N

pUnmet
it .
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Note that the network flow terms fijt are eliminated, as fijt =−fjit due to (3c). This equation

shows that total supply equals total demand (after load shedding pUnmet∗it ) for any optimal solution

p∗gt,∀g ∈ G.

Next, we prove that each market participant maximizes its utility. For the demand side, since

the demand is inelastic, there is no need to consider utility maximization for the consumers. For

the supply side, consider thermal generator g ∈ GTher, which maximizes its producer surplus by

solving a profit-maximization problem:

max (λ∗i(g),t−CV
g )pgt (EC.1a)

s.t. (3f), (3h), (3i), (3k) for time t. (EC.1b)

The profit-maximization problem for a renewable generator is formulated similarly.

We would like to show that at t, the optimal production level solution for each generator p∗gt from

DCOPF is also optimal for the generator’s profit-maximization problem. We reformulate (EM) by

dualizing the flow balance constraint (3b) with its optimal shadow price λ∗it:

min
∑
t∈T

 ∑
g∈GTher

CV
g pgt +

∑
i∈N

CVOLLpUnmet
it

+

∑
i∈N

∑
t∈T

λ∗it

Dit−

∑
g∈Gi

pgt + pUnmet
it +

∑
(j,i)∈E

fjit−
∑

(i,j)∈E

fijt

 (EC.2a)

s.t. (3c)− (3k) (EC.2b)

Since (EM) is a linear program, this reformulation is exact. Reversing the sign of the objective func-

tion (EC.2a) and rearranging the terms by generators and buses, we turn (EC.2) to the following

maximization problem:

max
∑
t∈T

( ∑
g∈GTher

(λ∗i(g),t−CV
g )pgt +

∑
g∈GRenew

λ∗i(g),tpgt +
∑
i∈N

(λ∗it−CVOLL)pUnmet
it

−
∑
i∈N

λ∗it(
∑

(j,i)∈E

fjit−
∑

(i,j)∈E

fijt)
)

(EC.3a)

s.t. (3c)− (3k), (EC.3b)

which can be decomposed by time, generators, and buses. After decomposition, the problem for

thermal generator g ∈ GTher at time t is the same as the profit-maximization problem (EC.1).

Therefore, the optimal production level p∗gt is also optimal for the profit-maximization problem.

The same can be shown for renewable generators g ∈ GRenew. Thus, under the optimal shadow price

λ∗it, the optimal production solution p∗gt maximizes producer surplus. �
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Theorem 2. If the thermal generator g bids truthfully in the energy market, then its profit from

the energy market at t is as follows:

(1) If λ∗i(g),t > CV
g , then the profit is (λ∗i(g),t − CV

g )Pmax
g ≥ 0. In particular, if pUnmet∗

i(g),t > 0, then

λ∗i(g),t =CVOLL >CV
g and the profit is (CVOLL−CV

g )Pmax
g ;

(2) If λ∗i(g),t ≤CV
g , then the profit is 0.

Proof. of Theorem 2 (1) When λ∗i(g),t >C
V
g , because of the dual constraint (4a), we must have

α∗gt > 0. By the complementary slackness constraint (4e), we have p∗gt = q̄g + v∗g . Since Proposition

3 shows that when generators bid truthfully q̄g + v∗g = Pmax
g , we have p∗gt = Pmax

g and the profit of

generator g equals (λ∗i(g),t−CV
g )p∗gt = (λ∗i(g),t−CV

g )Pmax
g .

When pUnmet∗
i(g),t > 0, because of the complementary slackness constraint (4d), λ∗i(g),t =CVOLL. Since

CVOLL is higher than the variable cost of any generator, we have λ∗i(g),t =CVOLL >CV
g . Using the

profit expression we obtained in the previous paragraph, the profit of g is (CVOLL−CV
g )Pmax

g .

(2) When λ∗i(g),t =CV
g , the profit equals 0 because the revenue equals the cost.

If λ∗i(g),t <CV
g , the optimal production level must be 0. This is because if p∗gt > 0, then by com-

plementary slackness constraint (4c), λ∗i(g),t−α∗gt−CV
g = 0⇒ λ∗i(g),t = α∗gt+CV

g , which is impossible

because λ∗i(g),t < CV
g and α∗gt ≥ 0. Therefore, the production level is 0 and thus the profit is also

0. �

Proposition 5. Assuming a thermal generator g̃ is marginal at bus i and time period t:

(1) If the generator does not produce at its full capacity, then its profit from the energy market

at t is 0;

(2) If the generator produces at its full capacity, then its profit from the energy market at t is

between 0 and (CVOLL−CV
g̃ )Pmax

g̃ , and equals (CVOLL−CV
g̃ )Pmax

g̃ when pUnmet∗
i(g̃),t > 0.

Proof. of Proposition 5 (1) Since the thermal generator g̃ is a marginal generator, p∗g̃t > 0. Due

to the complementary slackness constraint (4c), we have

λ∗i(g̃),t−α∗g̃t−CV
g̃ = 0. (EC.4)

If the generator does not produce at its full capacity, p∗g̃t <P
max
g̃ . Thus, according to Proposition 3,

there exist optimal solutions for pg̃t and vg̃ such that p∗g̃t < q̄g̃+v∗g̃ = Pmax
g̃ . Because of complementary

slackness constraints (4e), α∗g̃t = 0 and equation (EC.4) becomes λ∗i(g̃),t =CV
g̃ . Therefore, according

to Theorem 2 the profit for generator g̃ at time period t is 0.
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(2) Now consider the generator producing at its full capacity. Because of α∗g̃t ≥ 0 and equation

(EC.4), we have λ∗i(g̃),t = CV
g̃ + α∗g̃t ≥ CV

g̃ . Because of (4b), we also have λ∗i(g̃),t ≤ CVOLL. Thus,

λ∗i(g̃),t ∈ [CV
g̃ ,C

VOLL] and g̃’s profit is no less than 0 and no more than (CVOLL−CV
g̃ )Pmax

g̃ .

If pUnmet∗
i(g̃),t > 0, then because of Theorem 2 the profit of g̃ equals (CVOLL−CV

g̃ )Pmax
g̃ . �

Corollary 2. If a thermal generator g never operates at the full capacity, then its net CONE

equals its investment cost.

Proof. of Corollary 2 If the thermal generator g never operates at its full capacity, then either

it generates no electricity and gets no income, or its production is less than its capacity. In the

latter case, g must be a marginal generator that has the highest variable costs among all operating

generators at the bus. Otherwise, the generation from a more costly generator could have been

fulfilled by g at a lower cost. According to Proposition 5, in this case generator g also gets 0

profit. Therefore, generator g is revenue-balanced and gets 0 profit from the energy market. By the

definition of net CONE in (1), the net CONE of g equals its investment cost. �

Lemma 1. If the leader bids 0 in the capacity market, we have the following results for its revenue:

(1) If the leader g = 1 is in the set Ĝ \ {ĝ} when bidding truthfully, then its revenue does not

change when it bids 0, and the new market clearing price Wĝ′ =Wĝ.

(2) If the leader g = 1 is the marginal supplier when bidding truthfully, then the leader in-

creases revenue by bidding 0 when (i) FU
1 P

max
1 ≥ Πmax−Wġ

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i and FU

1 P
max
1 >

W1
Wĝ′

(
Πmax−W1

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i

)
, in which case the new market clearing price satisfies Wĝ′ ≤Wġ;

(ii) FU
1 P

max
1 <

Πmax−Wġ

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i , in which case the new market clearing price satisfies

Wĝ′ ≥Wg̈.

(3) If the leader g= 1 is in the set G \ Ĝ when bidding truthfully, then it generates more revenue

when bidding 0, and the new market clearing price satisfies Wĝ′ ≤Wĝ.

Proof. of Lemma 1 (1) When the leader is an allocated non-marginal supplier when bidding

truthfully, it sells its entire qualified capacity at Wĝ. If instead it bids 0, its allocated capacity stays

the same, and the market clearing price does not changed. Thus, its revenue does not change.

(2) If the leader is the marginal supplier when bidding truthfully, then when it bids 0 instead,

the new market clearing price Wĝ′ is either no more than Wġ or no less than Wg̈. We are interested

in finding out when the new market clearing price leads to increased revenue for the leader.

First, we find the condition under which Wĝ′ ≤Wġ. Consider when Wĝ′ = Wġ, the new mar-

ket clearing quantity QSold′ =
Πmax−Wġ

A
, and the updated set of allocated suppliers Ĝ′ = Ĝ. To
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clear the market at the price Wġ, the market clearing quantity QSold′ should be in the interval

(
∑

i∈Ĝ\{ġ}F
U
i P

max
i ,

∑
i∈Ĝ F

U
i P

max
i ]. If QSold′ >

∑
i∈Ĝ F

U
i P

max
i , then the market clearing price is above

Wġ; Else if QSold′ ≤
∑

i∈Ĝ\{ġ}F
U
i P

max
i , then the market clearing price is below Wġ. Therefore, Wĝ′ ≤

Wġ if and only if QSold′ =
Πmax−Wġ

A
≤
∑

i∈Ĝ F
U
i P

max
i ⇒ FU

1 P
max
1 ≥ Πmax−Wġ

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i .

Now let Wĝ′ ≤ Wġ. If the leader increases its revenue by bidding 0, then its up-

dated revenue Wĝ′F
U
1 P

max
1 > W1

(
Πmax−W1

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i

)
, with the right-hand side of

the inequality being the revenue of the leader when bidding truthfully. Thus, FU
1 P

max
1 >

W1
Wĝ′

(
Πmax−W1

A
−
∑

i∈Ĝ\{1}F
U
i P

max
i

)
.

On the other hand, when Wĝ′ ≥Wg̈, we have Wĝ′ >Wĝ = W1. In addition, the leader is fully

allocated, and thus q′1 = FU
1 P

max
1 ≥ q1. Therefore, the leader’s revenue when bidding 0, Wĝ′q

′
1, is

always higher than its original revenue W1q1.

(3) If the leader is unallocated when bidding truthfully, then it does not get any revenue. If

instead it bids 0, then the updated market clearing price Wĝ′ ∈ (0,Wĝ]. Thus, the leader’s updated

revenue Wĝ′F
U
1 P

max
1 > 0. �

Proposition 6. If the leader g= 1 is in the set Ĝ \{ĝ} when bidding truthfully, then it can increase

the revenue by bidding a price that is different from its net CONE and become the marginal supplier

if ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ, and if either of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝFU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>WĝF

U
1 P

max
1 .

Proof. of Proposition 6 As shown in Lemma 1, the leader’s revenue does not change when

bidding 0. Therefore, when either bidding truthfully or bidding 0, the leader’s revenue equals

WĝF
U
1 P

max
1 . It has the incentive to deviate from the truthful bid only if it becomes a marginal

supplier and obtains a higher revenue. When it becomes the marginal generator, its sold capacity

is no more than FU
1 P

max
1 , so to increase revenue it must bid a price w′′1 >Wĝ.

The capacity that the leader sells when it becomes the marginal supplier is q′′1 = QSold′′
1 −∑

i∈Ĝ′′\{1}F
U
i P

max
i , and we have the following expression for the leader’s revenue:

w′′1q
′′
1 =w′′1

Πmax−w′′1
A

−
∑

i∈Ĝ′′\{1}

FU
i P

max
i


=− 1

A
(w′′1 −B)2 +

B2

A
. (EC.5)

Note that because the set of allocated generators Ĝ′′ depends on w′′1 , (EC.5) is a piecewise concave

quadratic function. For each Ĝ′′ ∈ G, the maximizer for the quadratic function is w′′1 = B when
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ignoring the domain of w′′1 . The corresponding maximum is B2

A
. Note that the value of B depends

on the set Ĝ′′, and it decreases as Ĝ′′ includes more generators.

The shape of the piecewise concave quadratic function (EC.5) depends on how B compares with

the bidding prices of generators. We illustrate different shapes of (EC.5) in Figure EC.1. In Figure

EC.1a, B ≤Wĝ. Since the value of B decreases as more generators are included in Ĝ′′, if the leader

can bid higher than Wg̈ and gets allocated, then its revenue will continue a decreasing trend, as

the stationary point of the corresponding quadratic revenue function moves further left. In Figure

EC.1b B ∈ (Wĝ,Wg̈] and in Figure EC.1c B is greater than Wg̈ (and is no more than the net CONE

of the next expensive generator to g̈).

Wĝ Wg̈

(a) B ≤Wĝ

Wĝ Wg̈

(b) B ∈ (Wĝ,Wg̈]

Wĝ Wg̈

(c) B >Wg̈

Figure EC.1 Illustration for piecewise concave quadratic function (EC.5)

Consider the value of B corresponding to a set Ĝ′′ ∈ G . If B ≤Wĝ, then w′′1q
′′
1 monotonically

decreases when w′′1 >Wĝ, and thus w′′1q
′′
1 cannot exceed the revenue when the leader bids a price

no more than Wĝ and sells all its qualified capacity. Therefore, the leader does not deviate from

its truthful bid when B ≤Wĝ.

Otherwise, if B >Wĝ, the maximum of w′′1q
′′
1 can be achieved either at B (if B <Wg̈′′) or at

Wg̈′′ . If w′′1 =B is the maximizer, then the corresponding revenue is B2

A
, otherwise, the revenue is

Wg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
. Note that Wg̈′′ is not necessarily illustrated in Figure EC.1,

as in general Wg̈′′ ≥Wg̈.

Therefore, it is beneficial for the leader to bid untruthfully if ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corre-

sponding B >Wĝ, and if the revenue from truthful bidding, WĝF
U
1 P

max
1 is less than either of the

following:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B2

A
;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
.
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Note that for condition (i), maxĜ′′∈Ḡ,B<Wg̈′′
B2

A
>WĝF

U
1 P

max
1 is equivalent to maxĜ′′∈Ḡ,B<Wg̈′′

B >√
AWĝFU

1 P
max
1 . �

Proposition 7. If the leader g= 1 is the marginal supplier when bidding truthfully, then it could

increase the revenue by either bidding 0 or bidding a different price as the marginal supplier. The

leader prefers to still be the marginal supplier if ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′,

and if either of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 .

The leader’s strategic offer price w′′1 equals either B or Wg̈′′ depending on which price leads to a

higher revenue. The leader bids truthfully only if w′′1 =W1.

Proof. of Proposition 7 If the leader bids 0, then its revenue is Wĝ′F
U
1 P

max
1 . To find conditions

under which it is beneficial for the leader to be the marginal supplier, we can use the results in

Proposition 6, by treating 0 as the leader’s truthful bidding price and Wĝ′ as the corresponding

market clearing price. Thus, the leader earns a higher revenue than Wĝ′F
U
1 P

max
1 if ∃Ḡ such that

∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′ , and if either of the following conditions is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 .

Case (i) corresponding to the leader bidding w′′1 =B for a Ĝ′′ ∈ Ḡ that maximizes the left-hand

side of the inequality; Case (ii) corresponding to the leader bidding w′′1 = W ′′
g̈ for a Ĝ′′ ∈ Ḡ that

maximizes the left-hand side of the inequality. If both cases are true, then the leader picks a bidding

price (either B or Wg̈′′) that leads to the higher revenue. This price may or may not be the same

as its net CONE.

If the conditions stated above are not satisfied, then the leader maximizes its revenue by bidding

0. �

Proposition 8. If the leader g= 1 is in the set G\Ĝ when bidding truthfully, then it always earns a

higher revenue when bidding untruthfully. More specifically, the leader maximizes its revenue either

by bidding 0 or by becoming the marginal supplier. It becomes the marginal supplier if FU
1 P

max
1 ≥

Πmax−Wĝ

A
−
∑

i∈Ĝ\{ĝ}F
U
i P

max
i and ∃Ḡ such that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′, and if either

of the following is true:

(i) maxĜ′′∈Ḡ,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈ḠWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 .
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Proof. of Proposition 8 Since g = 1 ∈ G \ Ĝ, when it bids 0, the new market clearing price

Wĝ′ ≤Wĝ. Also, when it becomes the marginal supplier, in order to get allocated its bidding price

w′′1 ≤Wĝ.

When the leader bids 0, its revenue is Wĝ′F
U
1 P

max
1 . To earn a higher revenue as the marginal

supplier, we need w′′1 > Wĝ′ ⇒ w′′1 ∈ (Wĝ′ ,Wĝ]. Therefore, the leader will not be the marginal

supplier if Wĝ′ =Wĝ, which is true when r∗ =
Πmax−Wĝ

A
>
∑

i∈Ĝ\{ĝ}F
U
i P

max
i +FU

1 P
max
1 ⇒ FU

1 P
max
1 <

Πmax−Wĝ

A
−
∑

i∈Ĝ\{ĝ}F
U
i P

max
i .

Otherwise, if Wĝ′ < Wĝ and thus FU
1 P

max
1 ≥ Πmax−Wĝ

A
−
∑

i∈Ĝ\{ĝ}F
U
i P

max
i , then it is possible

for the leader to obtain a higher revenue than Wĝ′F
U
1 P

max
1 by bidding w′′1 ∈ (Wĝ′ ,Wĝ]. To find

conditions under which it is beneficial for the leader to become the marginal supplier, we again use

the results in Proposition 6, similar to what we did in the proof of Proposition 7. By treating 0

as the leader’s truthful bidding price and Wĝ′ as the corresponding market clearing price, we can

conclude that in this case the leader earns a higher revenue as the marginal supplier if ∃Ḡ such

that ∀Ĝ′′ ∈ Ḡ, the corresponding B >Wĝ′ , and if either of the following conditions is true:

(i) maxĜ′′∈G,B<Wg̈′′
B >

√
AWĝ′FU

1 P
max
1 ;

(ii) maxĜ′′∈GWg̈′′

(
Πmax−Wg̈′′

A
−
∑

i∈Ĝ′′\{1}F
U
i P

max
i

)
>Wĝ′F

U
1 P

max
1 . �

Proposition 9. If the network is connected and without congestion, then the value of λ∗it is the

same at all buses for each time period. If there is physical withholding by the leader, then λ∗
′
i(1),t ≥

λ∗i(1),t,∀t∈ T .

Proof. of Proposition 9 To prove λ∗it is the same at all buses, we use an alternative expression

for the energy market price (Ji et al. 2016) based on the shift factor formulation of (EM):

λ∗it = λ̂∗t +
∑

(j,k)∈E

Bjk(Uji−Uki)(−ζ∗jkt + η∗jkt),

where λ̂t is a dual variable of the shift factor formulation. Uji and Uki are parameters in the

shift factor formulation. When there is no congestion in the connected network, constraints (3d)

and (3e) are not binding. By complementary slackness, their corresponding optimal dual solutions

ζ∗ijt = η∗ijt = 0. Therefore, λ∗it = λ̂∗t ,∀i∈N . That is to say, λ∗it is the same at all buses for t.

When there is no congestion, there is only one marginal generator in the network at time t,

which we denote as g̃. Since we minimize total costs, generators with CV
g < CV

g̃ must operate at

full capacity, while generators with CV
g >C

V
g̃ do not produce. As shown in the proof of Proposition

5, when p∗g̃t <P
max
g̃ the price λ∗i(g̃),t =CV

g̃ . Thus, λ∗it =CV
g̃ ,∀i∈N .
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Let g̈ be the least expensive generator that is not operating (we assume for now that g̃ is not

the most expensive generator). We show that when p∗g̃t = Pmax
g̃ , λ∗i(1),t ∈ [CV

g̃ ,C
V
g̈ ]. On one hand,

as shown in the proof of Proposition 5, when the generator operates at full capacity λ∗i(1),t ≥CV
g̃ .

On the other hand, since the capacity constraint for g̈ is not a strict equality, α∗g̈t = 0 and thus

λ∗i(1),t ≤CV
g̈ because of dual constraint (4a).

Now let g̃′ be the new marginal generator at t when the leader withholds its capacity. Then

CV
g̃′ ≥CV

g̃ . The updated LMP can be similarly calculated as before. In particular:

(1) If g̃′ = g̃, then p∗g̃t < p∗
′
g̃t ≤ Pmax

g̃ . Therefore, λ∗i(1),t =CV
g̃ and λ∗

′
i(1),t ∈ [CV

g̃ ,C
V
g̈ ]. Thus, λ∗

′
i(1),t ≥

λ∗i(1),t;

(2) If g̃′ 6= g̃, then CV
g̃′ ≥CV

g̈ and thus λ∗
′
i(1),t ∈ [CV

g̈ ,C
V
g̈′ ]. Therefore, λ∗

′
i(1),t ≥ λ∗i(1),t.

Finally, if g̃ is the most expensive generator, then after withholding the price either stays the

same or increases to CVOLL. �

EC.3. MIP Model for Capacity Market

In this section, we propose a MIP model for the capacity market. First, we sort the generators in

the ascending order of Wg. Let xg be a binary variable that equals 1 if and only if generator g gets

allocated in the capacity market, and zg be a binary variable that equals 1 if and only if generator

g is the marginal producer. The MIP model is as follows:

(CM-MIP): min
∑
g∈G

Wgzg (EC.6a)

s.t. hg ≤ FU
g P

max
g g ∈ G (EC.6b)

qg ≤ hg g ∈ G (EC.6c)

qg ≤ FU
g P

max
g xg g ∈ G (EC.6d)

qg ≥ FU
g P

max
g (xg − zg) g ∈ G (EC.6e)

g∑
i=1

qi ≥QSold
g zg g ∈ G (EC.6f)

g∑
i=1

qi ≤QSold
g zg +M(1− zg) g ∈ G (EC.6g)

xg =

|G|∑
i=g

zi ∀g ∈ G (EC.6h)∑
g∈G

zg = 1 (EC.6i)

xg, zg ∈ {0,1} ∀g ∈ G (EC.6j)
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where QSold
g =

Πmax−Wg

A
is the total sold capacity when market clearing price equals Wg, and M

is a big-M constant. The objective (EC.6a) minimizes the market clearing price, which equals

the net CONE of the marginal producer. Constraints (EC.6b) set the upper bound for the offer

capacity. Constraints (EC.6c) set the upper bound for the sold capacity. Constraints (EC.6d)

connect variables qg and xg, and force qg to be 0 when xg = 0. Constraints (EC.6e) ensure that if

a non-marginal generator sells some of its capacity then all its capacity will be sold. Constraints

(EC.6f) and (EC.6g) ensure that if g is a marginal generator, then the total sold capacity up to

generator g should equal QSold
g . Otherwise, those constraints are redundant. We can set the big-M

constant M =QSold
1 . This is because the total sold capacity is at most QSold

1 , as the lowest possible

market clearing price equals the lowest net CONE W1. Constraints (EC.6h) connect xg and zg.

Constraint (EC.6i) ensures that there is only 1 marginal producer.
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EC.4. Tables for Case Study

Table EC.1 Comparison for the leader’s profit ($) from the energy market (∗: potentially underestimated

difference due to suboptimality)

Normal congestion High congestion
Leader Demand (%) S. Both vs. noCM S. Both vs. True S. Both vs. noCM S. Both vs. True
NG 60 0.0 0.0 0.0 0.0
NG 70 0.0 0.0 0.0 0.0
NG 80 0.0 0.0 0.0 0.0
NG 90 -355.1 0.0 -718.9 0.0
NG 100 -263.1 0.0 -29110.7 14501.2
NG 110 0.0 0.0 0.0 0.0
NG 120 0.0 0.0 0.0 0.0
Coal 60 -1242.7 566.9 0.0 0.0
Coal 70 0.0 0.0 0.0 0.0
Coal 80 -539.8 0.0 -386.5 0.0
Coal 90 -173.2 0.0 0.0 0.0
Coal 100 -182.0 0.0 -9032.2 14760.0
Coal 110 0.0 0.0 0.0 0.0
Coal 120 0.0 0.0 0.0 0.0
Nuclear 60 0.0 650.3 0.0 0.0
Nuclear 70 0.0 0.0 0.0 0.0
Nuclear 80 0.0 994.0 0.0 691.2
Nuclear 90 0.0 0.0 0.0 0.0
Nuclear 100 -443.3 0.0 -28330.0 29289.1
Nuclear 110 0.0 0.0 0.0 0.0
Nuclear 120 0.0 0.0 -1403738.2 0.0
RFO 60 0.0 0.0 0.0 0.0
RFO 70 0.0 0.0 0.0 0.0
RFO 80 0.0 0.0 0.0 0.0
RFO 90 0.0 0.0 0.0 0.0
RFO 100 0.0 0.0 0.0 0.0
RFO 110 0.0 0.0 0.0 0.0
RFO 120 0.0 0.0 -668428.0 0.0
Hydro 60 -809.5 0.0 0.0∗ 0.0
Hydro 70 0.0 0.0 −121.9∗ 0.0
Hydro 80 -166.1 0.0 -2388.5 0.0
Hydro 90 0.0 0.0 0.0∗ 0.0
Hydro 100 0.0 0.0 -4565.8 0.0
Hydro 110 0.0 0.0 0.0 0.0
Hydro 120 0.0 0.0 0.0 0.0
Wood 60 0.0 0.0 0.0 0.0
Wood 70 0.0 0.0 0.0 0.0
Wood 80 0.0 0.0 0.0 0.0
Wood 90 0.0 0.0 0.0 0.0
Wood 100 0.0 0.0 -201.2 0.0
Wood 110 0.0 0.0 0.0 0.0
Wood 120 0.0 0.0 0.0 0.0
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Table EC.2 Comparison for the leader’s profit ($) from the energy market, allowing untruthful bids for the

leader’s variable cost (∗: potentially underestimated difference due to suboptimality)

Normal congestion High congestion
Leader Demand (%) S. Both vs. noCM S. Both vs. True S. Both vs. noCM S. Both vs. True
NG 60 0.0 0.0 0.0 0.0
NG 70 0.0 0.0 0.0 0.0
NG 80 0.0 0.0 0.0 0.0
NG 90 -96.4 564.7 -29.3 771.2
NG 100 0.0 18849.3 0.0 64715.8
NG 110 0.0 61.1 0.0∗ 269.3
NG 120 0.0 118488.0 0.0 5471.8
Coal 60 −1242.7∗ 566.9 0.0 0.0
Coal 70 0.0 0.0 0.0 248.5
Coal 80 -539.8 0.0 -386.5 0.0
Coal 90 -173.2 0.0 0.0 0.0
Coal 100 −182.0∗ 0.0 -7920.3 16035.9
Coal 110 0.0 0.0 0.0 0.0
Coal 120 0.0 61801.5 0.0 0.0
Nuclear 60 0.0 650.3 0.0 0.0
Nuclear 70 0.0 0.0 0.0 0.0
Nuclear 80 0.0 994.0 0.0 691.2
Nuclear 90 0.0 0.0 0.0 0.0
Nuclear 100 -443.3 0.0 -25972.7 31813.7
Nuclear 110 0.0 0.0 -0.1 0.0
Nuclear 120 0.0 884096.4 0.0 2137730.4
RFO 60 0.0 0.0 0.0 0.0
RFO 70 0.0 0.0 0.0 0.0
RFO 80 0.0 0.0 0.0 0.0
RFO 90 0.0 0.0 0.0 0.0
RFO 100 0.0 0.0 0.0 0.0
RFO 110 0.0 0.0 0.0 0.0
RFO 120 0.0 731223.9 0.0 936940.8
Hydro 60 0.0 1411.6 0.0∗ 0.0
Hydro 70 0.0 591.2 0.0 181.4
Hydro 80 0.0 543.7 0.0 5106.5
Hydro 90 0.0 649.8 0.0 2225.0
Hydro 100 0.0 0.0 0.0 10137.5
Hydro 110 0.0 0.0 0.0 259301.9
Hydro 120 0.0 0.0 0.0 164498.9
Wood 60 0.0 0.0 0.0 0.0
Wood 70 0.0 0.0 0.0 0.0
Wood 80 0.0 0.0 0.0 0.0
Wood 90 0.0 0.0 0.0 0.0
Wood 100 0.0 0.0 0.0 868.6
Wood 110 0.0 0.0 0.0 987.6
Wood 120 0.0 0.0 0.0 1240.4
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Table EC.3 Computation time (seconds) of high congestion noCM instances without and with the valid

inequality (bold numbers: improved run time with valid inequality; “tl.”: hits the 20-minute time limit)

Leader Demand (%) No ineq. With ineq.
NG 60 4.5 5.9
NG 70 4.3 4.6
NG 80 4.3 5.0
NG 90 4.2 5.5
NG 100 5.4 7.2
NG 110 6.5 11.6
NG 120 7.5 9.1
Coal 60 15.0 17.5
Coal 70 6.7 8.6
Coal 80 5.9 5.8
Coal 90 5.3 6.1
Coal 100 14.3 17.3
Coal 110 11.5 78.7
Coal 120 9.7 11.8
Nuclear 60 18.6 19.1
Nuclear 70 10.2 13.5
Nuclear 80 7.7 10.4
Nuclear 90 6.2 7.6
Nuclear 100 17.0 27.4
Nuclear 110 10.2 18.2
Nuclear 120 20.7 18.1
RFO 60 3.8 8.0
RFO 70 5.0 4.3
RFO 80 5.3 4.8
RFO 90 5.3 5.3
RFO 100 5.2 5.1
RFO 110 4.6 4.8
RFO 120 5.1 5.0
Hydro 60 tl. tl.
Hydro 70 tl. tl.
Hydro 80 tl. 44.6
Hydro 90 tl. tl.
Hydro 100 13.9 tl.
Hydro 110 5.2 6.8
Hydro 120 5.2 6.7
Wood 60 4.4 7.8
Wood 70 5.5 7.3
Wood 80 4.5 6.9
Wood 90 4.4 5.5
Wood 100 4.7 6.1
Wood 110 6.4 6.0
Wood 120 5.1 5.6
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