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Abstract

We present a detailed study of the time-dependent behavior of both the queue-length pro-
cess and the workload process of various types of preemptive Last-Come-First-Served queueing
systems, such as the preemptive-repeat-different and preemptive-repeat-identical models recently
studied in (Asmussen andGlynn, 2017) and (Bergquist and Sigman, 2022). Ourmain results show
various quantities that provide information about the time-dependent behavior of these processes
can be expressed in terms of the Laplace-Stieltjes transform of the busy period, andwe showhow a
natural coupling procedure can be used to establish, for each preemptive queue we consider, a re-
cursive procedure for calculating these busy period transforms on the set of all complex numbers
having positive real part.
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1 Introduction
A handful of recently-published articles have focused on studying single-server queueing systems
operating under various types of preemptive-repeat Last-Come-First-Served (LCFS) queueing dis-
ciplines. In the work of Asmussen and Glynn [8], the authors establish stability conditions for
single-server queues operating under either the preemptive-repeat-identical andpreemptive-repeat-
different LCFS disciplines (these will be defined shortly) when customers arrive in accordance to
a Poisson process, as well as the more general setting where customers arrive in accordance to a
Markovian Arrival process (MAP). In Bergquist and Sigman [9] the authors study properties of the
limiting distribution of the workload process associated with both the preemptive-repeat-identical
and preemptive-repeat-different LCFS disciplines, when customers arrive in accordance to a Poisson
process. Another recent work on this topic is that of Horváth et al. [15], where the authors study
a single-server queue with Poisson arrivals that operates under a nonpreemptive LCFS with resam-
pling discipline that is similar in some (but not all) respects to the single-server queue operating
under the preemptive-repeat-different LCFS discipline.

Our main objective is to build further on [9] by studying the time-dependent behavior of both
the queue-length process {Q(t); t ≥ 0} and the workload process {W (t); t ≥ 0} associated with
both of the preemptive-repeat LCFS disciplines mentioned above, where for each t ≥ 0, Q(t) and
W (t) denote, respectively, the number of customers found in the system and the remaining amount
of work present in the system at time t. In each of these models, we assume customers arrive one-
at-a-time to a single-server queueing system in accordance to a Poisson arrival process {A(t); t ≥ 0}
having rate λ and points {Tn}n≥1, so that for each integer n ≥ 1, Tn denotes the arrival time of the
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nth customer to arrive to the system strictly after time zero. HereA(t) denotes the number of points
found in the set (0, t] (we set A(0) := 0), and the one-to-one correspondence between the points
{Tn}n≥1 and the counting process {A(t); t ≥ 0} is reinforcedmathematically by noting that for each
real number t ≥ 0, and each integer n ≥ 1,

A(t) :=

∞∑
k=1

1{Tk≤t}, Tn := inf{t ≥ 0 : A(t) ≥ n}

where for each event C, 1C is the indicator function associated with C, in that 1C is equal to 1 if C
occurs, and is equal to 0 if C does not occur.

In each queueing model we study, the server always operates in a preemptive LCFS manner,
meaning whenever a customer arrives to the system, the server immediately suspends working on
the current job and devotes its full attention to the new arrival, only to return servicing the newly-
neglected jobwhen the new arrival leaves the system. Oneway to picture how such amodel behaves
is to imagine the jobs physically stacked on top of one another, where new arrivals land on top of
the stack, and at any time instant, the server can only process (at unit rate) the work possessed by
the job located on top of the stack. It also helps to alternatively refer to each position in the stack
as a slot, where an arriving customer always occupies the lowest-numbered unoccupied slot upon
arrival, and the server always provides its full attention to the customer having, among all present
customers, the highest slot position in the stack.

There are multiple ways in which the server can behave once it returns to a customer it tried
serving previously:

• Preemptive-Resume: The customer arriving at time Tn brings with it to the system an amount
of work Bn for processing. Whenever a customer’s processing experience with the server
is interrupted, upon revisiting the server it continues from where it left off. In this model,
we assume the sequence {Bn}n≥1 is i.i.d. with cumulative distribution function (CDF) F
and Laplace-Stieltjes transform (LST) β, with {Bn}n≥1 being independent of the sequence
{Tn}n≥1 (and {A(t); t ≥ 0}).

• Preemptive-Repeat-Different: The (tagged) customer arriving at time Tn brings with it to the
system a sequence of work {Bn,k}k≥1 for (potential) processing, where the doubly-indexed
sequence {Bn,k}n≥1,k≥1 is assumed to be i.i.d. with CDF F and LST β, and independent of
{Tn}n≥1. When this customer first arrives to the system, it immediately begins having its
amount of work Bn,1 processed by the server. If a new customer arrives before this amount
of work has been processed, the server moves on to the new arrival: when the server returns
to the tagged customer, it then begins processing the amount of work Bn,2. Again, if a new
arrival occurs before the server finishes this amount of work, it moves on to the new arrival,
andwhen it returns to the tagged customer, it begins processing the amount ofworkBn,3. This
behavior continues throughout until the instant where the server finally finishes processing
one of these amounts of work possessed by the tagged customer, at which time the tagged
customer departs from the system.

• Preemptive-Repeat-Identical: Similar to the preemptive-resume case, here the customer arriving
at time Tn brings with it to the system an amount of workBn for processing, where we assume
the sequence {Bn}n≥1 is i.i.d. with CDF F and LST β, with {Bn}n≥1 being independent of
the sequence {Tn}n≥1 (and {A(t); t ≥ 0}). Unlike the preemptive-resume case, whenever the
server revisits the customer that arrived at time Tn, it completely restarts processing the job of
this customer, meaning all of the previous work performed by the server on that customer is
discarded entirely.

In the interest of improving readability, any reference made to a preemptive-resume queue will
correspond to a single-server queueing systemoperating under the Last-Come-First-Servedpreemptive-
resume discipline. Likewise, any reference to a preemptive-repeat-different queue or a preemptive-
repeat-identical queue should be interpreted in a similar manner.
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Throughout our study, we use arguably the most natural definition for the workload at time t.
For each t ≥ 0,W (t) represents the sum of the amounts of work possessed by each customer present
in the system at time t, where the amount of work possessed by the customer within position j of
the stack corresponds to either (a) for the customer currently being served at time t, the remaining
amount of work present associated with the specific job being processed by the server at that time,
or (b) for each customer waiting in the stack to be revisited by the server, the amount of work the
server will encounter once it returns to that customer. This is how the workload process is defined
in [9].

We associatewith each slot k ≥ 1, the randomvariableWk(t) that denotes the remaining amount
of work possessed by the customer occupying slot k at time t. Our main objective is to study the
joint distribution of Q(t) and {Wk(t)}k≥1, from which we can study the joint distribution of Q(t)
andW (t) since for each t ≥ 0,

W (t) =
∞∑
k=1

Wk(t).

Define the set C+ := {α ∈ C : Re(α) > 0} ∪ {0} as the union of the singleton {0} with the complex
open half-plane consisting of complex numbers having a positive real part, defineC∞

+ := {{αn}n≥1 :
α ∈ C+} as the set of all sequences having elements belonging to C+, and define, for each integer
n0 ≥ 0 and each integer n ≥ 0, the function ϕn0;n : C+ × C∞

+ → C as

ϕn0;n(α,γ) :=

∫ ∞

0

e−αtEn0

[
1(Q(t) = n)e−

∑n
k=1 γkWk(t)

]
dt, α ∈ C+, γ ∈ C∞

+

where En0 represents conditional expectation, conditional on Q(0) = n0, where each of the n0 cus-
tomers present in the system at time 0 begin with an amount of work having CDF F , independent
of everything else.

The method we use to derive the ϕn0;n functions is a simple modification of the approach used
in [14], where various factorization results were established for what was referred to in [14] as
Preemptive-Resume-Production systems, or PRP systems. It is notable that the overall idea behind
the approach found in [14] is similar to ideas used by thematrix-analytic community (see e.g. [17]),
and so we suspect many of our results will also carry over to the case where customers arrive in
accordance to a Markovian Arrival Process, at the cost of more tedious proofs/derivations, in par-
ticular having to establish the invertibility of various matrices that will inevitably be encountered in
this more general setting. We plan to address this more general case in a future study.

For each of the three preemptive queueing systemswe study in this manuscript, the formulas we
derive for each ϕn0;n function are in terms of the LST of the busy period associated with this queue.
This is not surprising, as this fact is in-line with what was observed in a series of papers written
by Abate and Whitt in the late 1980s [1, 2, 3, 4, 6] that address the transient (i.e. time-dependent)
behavior of theM/M/1queue, theM/G/1workload, and of regulatedBrownianmotion, aswell as in
related work of the author [10, 11, 12]. Hence, we also thoroughly discuss how, for each of the three
preemptive queueing systems, the LST of the busy period can be calculated using a natural iterative
scheme, at all complex numbers having positive real part. Through a single coupling arguent, we
will derive not only the iteration scheme discussed in Abate and Whitt [5] for the busy period LST
of the work-conserving M/G/1 queue, but also iterative schemes for both the preemptive-repeat-
different queue, and the preemptive-repeat-identical queue.

2 The Queue-Length Process and the Workload Process
The time-dependent behavior of both the queue-length process and the workload process is fairly
tractable for not only the preemptive-resume queue, but also the preemptive-repeat-different queue
and the preemptive-repeat-identical queue. We will observe that while the same argument can
be used to study the time-dependent behavior of the queue-length process in isolation of each of
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these three queues, each queue needs to be considered separately when we seek to study the time-
dependent behavior of both the queue-length process and the workload process, as well as the
distribution of the busy period of each of these three queueing systems.

2.1 The Queue-Length Process
Our first goal in this section is to study the marginal distributions of {Q(t); t ≥ 0} in isolation. In
particular, we will focus on deriving, for each α ∈ C,

ϕn0;n(α,0) =

∫ ∞

0

e−αtPn0
(Q(t) = n)dt.

These functions can be expressed in terms of the Laplace-Stieltjes transform π : C+ → C of the busy
period τ0 with respect to P1:

π(α) := E1[e
−ατ0 ], α ∈ C+

where for each integer k ≥ 0, and each s ≥ 0,

τk(s) := inf{t ≥ s : Q(t−) ̸= k,Q(t) = k}

and we follow the convention that τk := τk(0). Clearly, for each integer n0 ≥ 1,

En0 [e
−ατ0 ] = π(α)n0 , α ∈ C+

for each of the three preemptive queueing systems we will consider.
Our first result shows that ϕn0,0 can be expressed in terms of π.

Proposition 2.1 For each integer n0 ≥ 0,

ϕn0;0(α) =
π(α)n0

α+ λ(1− π(α))
. (1)

Proof We begin by verifying (1) for the case where n0 = 0. Using Fubini’s theorem, we get

ϕ0;0(α) =

∫ ∞

0

e−αtP0(Q(t) = 0)dt

= E0

[∫ ∞

0

e−αt1{Q(t)=0}dt

]
= E0

[∫ T1

0

e−αt1{Q(t)=0}dt

]
+ E0

[∫ ∞

τ0

e−αt1{Q(t)=0}dt

]
=

1

λ+ α
+

λ

λ+ α
π(α)ϕ0;0(α)

and solving for ϕ0;0(α) yields

ϕ0;0(α) =
1

α+ λ(1− π(α))
.

Furthermore, when Q(0) = n0 ≥ 1, another application of Fubini’s theorem yields

ϕn0;0(α) =

∫ ∞

0

e−αtPn0
(Q(t) = 0)dt = En0

[∫ ∞

0

e−αt1{Q(t)=0}dt

]
= En0

[∫ ∞

τ0

e−αt1{Q(t)=0}dt

]
= ϕ(α)n0ϕ0;0(α)
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proving the claim. ♢

Our next result shows that ϕn0;n can be expressed in terms of π. Our proof strategy will involve
showing the ϕn0;n(α) terms satisfy a particular recursive scheme that can be solved easily. The same
recursive scheme shows up repeatedly throughout this study, and so we now state an elementary
proposition that addresses this recursion.

Proposition 2.2 Suppose {an}n≥1 and {bn}n≥1 are two sequences of complex numbers, and the sequence
of complex numbers {xn}n≥0 satisfies, for each integer n ≥ 1,

xn = bn + anxn−1.

Then for each integer n ≥ 1,

xn =

[
n∏

ℓ=1

aℓ

]
x0 +

n∑
k=1

bk

n∏
ℓ=k+1

aℓ.

Proof This can be proven quickly using induction: we omit the details. ♢

Theorem 2.1 For each integer n0 ≥ 0 and each integer n ≥ 0, we have that for each α ∈ C+,

ϕn0,n(α,0) = π(α)n0

[
1

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n
(2)

+

n∑
k=1

1{n0≥k}π(α)
n0−k

[
1− π(α)

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n−k

.

This result, when n0 = 0, was established for the preemptive-resume queue in the work of Kella
et al. [16] using different techniques, and it can be inferred from [14] for the preemptive-resume
queue as well, under any initial condition. Indeed, the idea behind the proof we present of Theorem
2.1 is virtually identical to the idea used to establish themain results found in [14], but the particular
mechanics of this proof will be easier to modify later when we study both the queue-length process
and the workload process.

Proof We begin by deriving ϕ0;n(α,0) for each integer n ≥ 1. For each real t ≥ 0,

1{Q(t)=n} =

∫
(0,t]

1{Q(s−)=n−1}1{τn−1(s)>t,Q(t)=n}A(ds). (3)

Taking the expected value of both sides of (3), while applying the Campbell-Mecke formula to the
right-hand-side gives

P0(Q(t) = n) =

∫ t

0

P0(Q(s) = n− 1)P1(τ0 > t− s,Q(t− s) = n)λds (4)

and after multiplying both sides of (4) by e−αt, for α ∈ C+, then integrating with respect to t over
[0,∞), we get

ϕ0;n(α,0) = λE1

[∫ τ0

0

e−αt1{Q(s)=1}ds

]
ϕ0;n−1(α,0) (5)

where ϕ0;0(α,0) := ϕ0;0(α). Hence, for each integer n ≥ 1,

ϕ0;n(α,0) =

[
λE1

[∫ τ0

0

e−αs1{Q(s)=1}ds

]]n
ϕ0;0(α) =

[
λE1

[∫ τ0

0

1{Q(s)=1}ds

]]n
1

α+ λ(1− π(α))
.

(6)
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We can also solve for the unknown expected value found in both (5) and (6). Summing both sides
of (5) over the integers n ≥ 1 gives

1

α
− ϕ0;0(α) =

λ

α
E1

[∫ τ0

0

e−αs1{Q(s)=1}ds

]
(7)

and since ϕ0;0(α) was found in Proposition 2.1, (7) contains only one unknown: solving for this
unknown yields

E1

[∫ τ0

0

e−αs1{Q(s)=1}ds

]
=

1

λ

[
1− α

α+ λ(1− π(α))

]
=

1− π(α)

α+ λ(1− π(α))
. (8)

Plugging (8) into (6) then gives, for each integer n ≥ 1,

ϕ0;n(α,0) =
1

α+ λ(1− π(α))

[
λ(1− π(α))

α+ λ(1− π(α))

]n
proving (2) for the case where n0 = 0.

It remains to establish (2) for the case where n0 ≥ 1 and n ≥ 1. For each integer n ≥ 1,

1{Q(t)=n} = 1{n0≥n}1{Q(t)=n,τn−1>t} +

∫
(0,t]

1{Q(s−)=n−1}1{τn−1(s)>t,Q(t)=n}A(ds) (9)

and after taking the expected value of both sides and simplifying, we get

Pn0(Q(t) = n) = 1{n0≥n}Pn0(Q(t) = n, τn−1 > t) + λ

∫ t

0

Pn0(Q(s) = n− 1)P1(τ0 > t− s,Q(t− s) = n)ds.

(10)

Multiplying both sides of (10) by e−αt, then integrating with respect to t over [0,∞) gives

ϕn0;n(α,0) = 1{n0≥n}π(α)
n0−n (1− π(α))

α+ λ(1− π(α))
+

λ(1− π(α))

α+ λ(1− π(α))
ϕn0;n−1(α,0). (11)

Finally, we can solve this recursion by applying Proposition 2.2 to (11) and conclude that for
each integer n ≥ 1,

ϕn0,n(α,0) = π(α)n0

[
1

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n
+

min(n0,n)∑
k=1

π(α)n0−k

[
1− π(α)

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n−k

proving the claim. ♢

2.2 The Workload Process
Our next objective is to study the joint distribution of Q(t) and {Wk(t)}k≥1, but unlike our study of
Q(t), we will need to use a separate derivation for each of the three preemptive queueing systems
under consideration.

An important quantity associatedwith each preemptive queue is the functionN : C+×C+ → C,
defined as

N(α, γ) := E1

[∫ τ0

0

e−αs1{Q(s)=1}e
−γW1(s)dt

]
.
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This function will repeatedly appear in our study of the ϕn0,n functions. Each time we derive a
computable expression for N(α, γ), we will seek to calculate the quantity N(α, γ, x), defined for
each x > 0 as

N(α, γ, x) := E
[∫ τ0

0

e−αt1(Q(t) = 1)e−γW1(t)dt | Q(0) = 1,W1(0) = x

]
.

Note thatW1(0) is simply the amount of work possessed by the single customer present at time zero,
as we are also conditioning on Q(0) = 1. Once we have determined N(α, γ, x) for each x ≥ 0, we
can use a simple conditioning argument to conclude that

N(α, γ) =

∫
(0,∞)

N(α, γ, x)dF (x).

2.2.1 Preemptive-Resume Queues

While the time-dependent behavior of the preemptive-resume queue is much better understood
than the time-dependent behavior of both the preemptive-repeat-different and the preemptive-
repeat-identical queues, our objective here is to first present a procedure for studying the time-
dependent behavior of the preemptive-resume queue that can be adapted to study both preemptive-
repeat queues.

Our first result in this subsection focuses on the derivation ofN(α, γ) for the preemptive-resume
queue.
Proposition 2.3 For each α, γ ∈ C+,

N(α, γ) =
β(γ)− π(α)

α+ λ(1− π(α))− γ
(12)

Proof The key to calculatingN(α, γ) is to first focus on derivingN(α, γ, x). Observe first that when
Q(0) = 1 and W1(0) = x,∫ τ0

0

e−αt1(Q(t) = 1)e−γW1(t)dt =

∫ min(T1,x)

0

e−αye−γ(x−y)dy + 1(T1 ≤ x)

∫ τ0

T1

e−αt1(Q(t) = 1)e−γW1(t)dt

(13)
Taking the expected value of both sides of (13) gives

N(α, γ, x) =

∫ x

0

e−αye−γ(x−y)e−λydy +

∫ x

0

e−αyπ(α)N(α, γ, x− y)λe−λydy

= e−(α+λ)x

∫ x

0

e(α+λ−γ)ydy + e−(α+λ)xπ(α)

∫ x

0

N(α, γ, y)e(α+λ)ydy. (14)

Multiplying both sides of (14) by e(α+λ)x, then taking the partial derivative of both sides with re-
spect to x yields

∂

∂x
N(α, γ, x) + (α+ λ(1− π(α)))N(α, γ, x) = e−γx. (15)

Equation (15) is essentially a first-order linear ODE, with initial condition N(α, γ, 0) = 0. Solving
this ODE yields

N(α, γ, x) =
e−γx − e−(α+λ(1−π(α)))x

α+ λ(1− π(α))− γ
. (16)

Integrating both sides of (16) over [0,∞)with respect to dF (x) gives

N(α, γ) =
β(γ)− β(α+ λ(1− π(α)))

α+ λ(1− π(α))− γ
=

β(γ)− π(α)

α+ λ(1− π(α))− γ
(17)
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where the last equality follows from the well-known fixed point equation π(α) = β(α+λ(1−π(α))
satisfied by π when the service discipline of the M/G/1 queue is a work-conserving service disci-
pline. This completes the proof of the claim. ♢

The next result shows how we can modify the proof of Theorem 2.1 to derive ϕn0;n(α,γ).
Theorem 2.2 For each integer n0 ≥ 0, each integer n ≥ 0, each α ∈ C+, and each γ ∈ C∞

+ ,

ϕn0;n(α,γ)

= ϕn0;0(α)

[
n∏

ℓ=1

λN(α, γℓ)

]
+

n∑
k=1

1{n0≥k}π(α)
n0−k

[
k−1∏
ℓ=1

β(γℓ)

]
N(α, γk)

[
n∏

ℓ=k+1

λN(α, γℓ)

]
(18)

Proof The key to establishing this result is to derive the following recursive scheme: for each integer
n ≥ 1,

ϕn0;n(α,γ) = 1{n0≥n}π(α)
n0−n

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn) + λN(α, γn)ϕn0;n−1(α,γ). (19)

Once this recursion has been established, it can be solved using Proposition 2.2 to get (18).
It remains, then, to derive the recursion. First we observe that for each t ≥ 0, each integer n ≥ 1,

and each γ ∈ C+,
1(Q(t) = n)e−

∑n
k=1 γkWk(t) (20)

= 1(n0 ≥ n)1(τn ≤ t, τn−1 > t)e−
∑n

k=1 γkWk(t)

+

∫
(0,t]

1(Q(s−) = n− 1)e−
∑n−1

k=1 γkWk(s−)1(Q(t) = n, τn−1(s) > t)e−γnWn(t)A(ds).

Taking the expected value of both sides of (20), while further applying theCampbell-Mecke formula
to the right-hand-side gives

En0
[1(Q(t) = n)e−

∑n
k=1 γkWk(t)] (21)

= 1(n0 ≥ n)

[
n−1∏
k=1

β(γk)

]
En0

[1(τ1 ≤ t, τ0 > t,Q(t) = 1)e−γkW1(t)]

+ λ

∫ t

0

En0
[1(Q(s) = n− 1)e−

∑n−1
k=1 γkWk(s)]E1

[
1(Q(t− s) = 1, τ0 > t− s)e−γnW1(t−s)

]
ds.

Multiplying both sides of (21) by e−αt for α ∈ C+, then integrating both sides over [0,∞) gives

ϕn0,n(α,γ) = 1(n ≤ n0)

[
n−1∏
k=1

β(γk)

]
π(α)n0−nE1

[∫ τ0

0

e−αt1(Q(t) = 1)e−γnW1(t)dt

]
+ λϕn0,n−1(α,γ)E1

[∫ τ0

0

e−αt1(Q(t) = 1)e−αγnW1(t)dt

]

i.e.

ϕn0,n(α,γ) = 1(n ≤ n0)

[
n−1∏
k=1

β(γk)

]
π(α)n0−nN(α, γn) + λN(α, γn)ϕn0,n−1(α,γ)

which is (19). ♢

We conclude this subsection by stating the following corollary, which gives us the Laplace trans-
form of the joint Laplace-Stieltjes transform of Q(t) and W (t).
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Corollary 2.1 For each z ∈ D(0, 1), each α ∈ C+, and each γ ∈ C+,∫ ∞

0

En0 [z
Q(t)e−γW (t)]e−αtdt =

ϕn0;0(α)

1− λN(α, γ)z
+

N(α, γ)z

1− λN(α, γ)z

n0∑
k=1

π(α)n0−k(zβ(γ))k−1.

Proof This result follows quickly from Theorem 2.2, since∫ ∞

0

En0
[zQ(t)e−γW (t)] =

∞∑
n=0

znϕn0;n(α, γe).

♢

Readers should observe that the Laplace transform of the joint LST of Q(t) and W (t) was also
recently derived, for the case whereQ(0) = 0, in Theorem 2 of [13], and our formula (when n0 = 0)
agrees with the corresponding transform from [13]. In fact, it was further shown in [13] that when
Q(0) = 0, the joint LST of Q(t) and W (t) is the same for all symmetric M/G/1 service disciplines:
the preemptive-resume queue is an example of a symmetric M/G/1 queue.

2.2.2 Preemptive-Repeat-Different Queues

The joint Laplace-Stieltjes transform of Q(t) and {Wk(t)}k≥1 can be analyzed for the preemptive-
repeat-different queue as well using a similar proof technique, in fact the analysis is in some ways
simpler than the analysis used above to study the workload process of the preemptive-resume
queue.

Our first result in this section is an expression for N(α, γ).
Proposition 2.4 For each α, γ ∈ C+,

N(α, γ) =
β(γ)− β(α+ λ)

(α+ λ− γ)(1− λ
λ+α (1− β(λ+ α))π(α))

(22)

Proof We begin by expressingN(α, γ, x) in terms ofN(α, γ). Conditioning on the fact thatQ(0) = 1
andW1(0) = x, for x > 0, we get∫ τ0

0

e−αt1(Q(t) = 1)e−γW1(t)dt =

∫ x

0

e−αy1(A(y) = 0)e−γ(x−y)dy (23)

+ 1(T1 ≤ x)

∫ τ0

T1

e−αt1(Q(t) = 1)W1(t)dt.

Taking the expected value of both sides of (23), while further simplifying the right-hand-side gives

N(α, γ, x) =

∫ x

0

e−αye−λye−γ(x−y)dy + π(α)

[∫ x

0

e−αyλe−λydy

]
N(α, γ)

or

N(α, γ, x) =
e−γx − e−(α+λ)x

α+ λ− γ
+

λ

λ+ α
(1− e−(λ+α)x)π(α)N(α, γ). (24)

Integrating both sides of (24) over [0,∞)with respect to dF (x) yields

N(α, γ) =
β(γ)− β(α+ λ)

α+ λ− γ
+

λ

λ+ α
(1− β(λ+ α))π(α)N(α, γ)

and solving for N(α, γ) gives (22). ♢

Having Proposition 2.4 in hand, we are now ready to derive the ϕn0;n functions associated with
the preemptive-repeat-different queue.

9



Theorem 2.3 For each integer n0 ≥ 0, and each integer n ≥ 1,

ϕn0;n(α,γ) =

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)

n∑
k=1

1{n0≥k}π(α)
n0−k

[
λ(1− π(α))

α+ λ(1− π(α))

]n−k

+

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)

N(α, 0)
π(α)n0

[
1

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n
. (25)

Before we give the proof, it is instructive to use this result to determine the stationary joint dis-
tribution of Q(t) and {{Wk(t)}k≥1. Multiplying both sides by α, then letting α ↓ 0 yields

E[1{Q(∞)=n}e
−

∑Q(∞)
k=1 γkWk(∞)] =

[
n−1∏
ℓ=1

β(γℓ)

]
N(0, γn)

N(0, 0)
P(Q(∞) = n)

which implies that conditional onQ(∞) = n, the random variablesW1(∞),W2(∞), . . . ,Wn(∞) are
independent, whereWk(∞) has LST β, and Wn(∞) has LST

N(0, γn)

N(0, 0)
=

λ(β(γ)− β(λ))

(λ− γ)(1− β(λ))
.

Proof The proof of this result is actually much simpler in many respects than the derivation of the
ϕn0;n functions associated with the preemptive-resume queue. For each integer n ≥ 1,

1{Q(t)=n}e
−

∑n
k=1 γkWk(t) = 1{n0≥n}e

−
∑n−1

k=1 γkWk(0)1{τn≤t,τn−1>t,Q(t)=n}e
−γnWn(t)

+

∫
(0,t]

1{Q(s−)=n−1}e
−

∑n−1
k=1 γkWk(t)1{τn−1(s)>t,Q(t)=n}e

−γnWn(t)A(ds).

(26)
Taking the expected value of both sides of (26), while applying the Campbell-Mecke formula to the
right-hand-side gives

En0

[
1{Q(t)=n}e

−
∑n

k=1 γkWk(t)
]

= 1{n0≥n}

[
n−1∏
k=1

β(γk)

]
En0

[1{τn≤t,τn−1>t,Q(t)=n}e
−γnWn(t)]

+ λ

[
n−1∏
k=1

β(γk)

]∫ t

0

Pn0
(Q(s) = n− 1)E1

[
1{Q(t−s)=1}e

−γnW1(t−s)
]
ds (27)

and after multiplying both sides of the equality by e−αt, then integrating with respect to t over
[0,∞), we get

ϕn0;n(α,γ) = 1{n0≥n}π(α)
n0−n

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn) + λ

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)ϕn0;n−1(α,0) (28)

implying

ϕn0;n(α,γ) = 1{n0≥n}π(α)
n0−n

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)

+ λ

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)

min(n0,n−1)∑
k=1

(1− π(α))π(α)n0−k

[
1

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n−1−k

+ λ

[
n−1∏
ℓ=1

β(γℓ)

]
N(α, γn)π(α)

n0

[
1

α+ λ(1− π(α))

] [
λ(1− π(α))

α+ λ(1− π(α))

]n−1

(29)
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and since

λN(α, 0) =
λ(1− π(α))

α+ λ(1− π(α))
(30)

we arrive, after some algebra, at the claim. ♢

Remark It is interesting to notice that the joint distribution ofQ(t) and {Wk(t)}k≥1 for the ‘nonpreemptive-
LIFO with restart’ model of Horvath et al. [15] is exactly the same as the joint distribution of Q(t)
and {Wk(t)}k≥1 for the preemptive-repeat-different model. In fact, we can recover Theorem 1 of
[15] from Theorem 2.3 above by multiplying both sides by α, letting α ↓ 0, and setting γk = 0 for
1 ≤ k ≤ n− 1.

2.2.3 Preemptive-Repeat-Identical Queues

The workload process of the preemptive-repeat-identical queue behaves in a manner that makes
its analysis more difficult than that for the preemptive-resume queue, and the preemptive-repeat-
different queue, in that we will have to first study the joint distribution of Q(t) and {Wk(t)}k≥1

for a related preemptive-repeat-identical queueing system where each customer brings an amount
of work that has a discrete distribution. Once we derive results for this system, analogous results
will be established for the original preemptive-repeat-identical system through a natural limiting
procedure.

Given our original preemptive-repeat-identical queueing system,wedefine, for each integerm ≥
1, the sequence of random variables {B(m)

n }n≥1, where for each integer n ≥ 1,

B(m)
n :=

∞∑
k=1

k

2m
1{(k−1)/2m<Bn≤k/2m}.

For each integer m ≥ 1, the mth queueing system is a single-server queue operating under the
preemptive-repeat-identical discipline, where customers arrive in accordance to the arrival process
{A(t); t ≥ 0} (meaning each of these systems have the same arrival process) and the nth arrival
to the system arrives at time Tn, and brings an amount of work B

(m)
n for processing. Finally, we

let Q(m)(t) denote the number of customers present in the mth queueing system at time t, and for
each integer k ≥ 1, we letW (m)

k (t) denote the remaining amount of work possessed by the customer
present in slot k at time t.

Given each customer in themth queueing system brings a random amount of work for proccess-
ing that has a discrete distribution, it is also useful to associate with each such customer a label that
tells us precisely how much work was originally brought to the system by the arriving customer.
We say that an arriving customer to themth queueing system is a type-j customer with probability

pm,j := F (j/2m)− F ((j − 1)/2m).

By introducing this labeling scheme, we may say that each type-j customer bring to the system a
deterministic amount of work xm,j := j/2m for processing. For each integer k ≥ 1, and each t ≥ 0,
let Lk(t) denote the customer type of the customer present in slot k at time t.

Next, we introduce the functions ∆(m)
n0;n : C+ × C∞

+ × N∞ → C+, defined as follows: for each
α ∈ C+, each γ ∈ C∞

+ , and each i = (i1, i2, . . .) ∈ N∞ (where N denotes the set of positive integers)

∆(m)
n0;n(α,γ, i) := En0

[1(Q(m)(t) = n,L
(m)
1 (t) = i1, . . . , L

(m)
n (t) = in)e

−
∑n

k=1 γkW
(m)
k (t)].

Our first objective is to derive computable expression for the ∆
(m)
n0:n functions, and we will see

shortly that these functions be expressed in terms of the N(α, γ, x) quantities defined above. In
the process of studying this joint distribution, we will first need to examine the joint distribution of
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Q(t) and {Lk(t)}k≥1. Throughout, we let πm denote the LST of the busy period of themth queueing
system, and we let

Nm(α, γ, x) := E(1,x)

[∫ τ
(m)
0

0

e−αt1{Q(m)(t)=1}e
−γW

(m)
1 (t)dt

]
.

Proposition 2.5 For each α ∈ C+, and each i ∈ E∞, we have for each integer n ≥ 1,

∆(m)
n0;n(α,0, i) = ϕ

(m)
n0;0

(α)

[
n∏

ℓ=1

λpm,iℓNm(α, 0, xm,iℓ)

]

+

n∑
k=1

1{n0≥k}πm(α)n0−k

[
k∏

ℓ=1

pm,iℓ

]
Nm(α, 0, xm,ik)

[
n∏

ℓ=k+1

λpm,iℓNm(α, 0, xm,iℓ)

]
(31)

Proof This result can be proven using a method analogous to that used to establish Theorem 2.1,
in that the key to proving the claim is to show that the ∆

(m)
n0;n(α,0, i) terms satisfy the following

recursion: for each integer n ≥ 1,

∆(m)
n0;n(α,0, i) = 1{n0≥n}πm(α)n0−n

[
n∏

ℓ=1

pm,iℓ

]
Nm(α, 0, xm,in) + λpm,inNm(α, 0, xm,in)∆

(m)
n0;n−1(α,0, i).

(32)

Once this recursion has been established, we can use Proposition 2.2 to arrive at (31).
It remains to establish (32). Fix i ∈ N∞, and observe that for each integer n ≥ 1,

1{Q(m)(t)=n,L
(m)
1 (t)=i1,...,Ln(m)(t)=in}

= 1{n0≥n}1{L(m)
1 (0)=i1,...,L

(m)
n (0)=in,τ

(m)
n ≤t,τ

(m)
n−1>t,Q(m)(t)=n}

+

∫ t

0

1{Q(m)(s−)=n−1,L
(m)
1 (s−)=i1,...,L

(m)
n−1(s−)=in−1}

1{Q(m)(t)=n,τ
(m)
n−1(s)>t}Am,in(ds) (33)

where {Am,i(t); t ≥ 0} denotes the thinned Poisson process of type-i arrivals. Taking the expected
value of both sides of (33), while further applying the Campbell-Mecke formula to the stochastic
integral on the right-hand-side yields

Pn0
(Q(m)(t) = n,L

(m)
1 (t) = i1, . . . , L

(m)
n (t) = in)

= 1{n0≥n}P(L
(m)
1 (0) = i1, . . . , L

(m)
n (0) = in, τ

(m)
n ≤ t, τ

(m)
n−1 > t,Q(m)(t) = n)

+ λpm,in

∫ t

0

P(Q(m)(s) = n− 1, L
(m)
1 (s) = i1, . . . , L

(m)
n−1(s) = in−1)P(1,xm,im )(Q

(m)(t− s) = 1, τ
(m)
0 > t− s)ds.

(34)

Multiplying both sides of (34) by e−αt, then integrating with respect to t over [0,∞) gives

∆(m)
n0;n(α,0, i) = 1{n0≥n}

[
n∏

ℓ=1

pm,iℓ

]
πm(α)n0−nNm(α, 0, xm,in) + λpm,inNm(α, 0, xm,in)∆

(m)
n0;n−1(α,0, i)

which establishes the recursion. ♢

Thenext result completes the derivation of the∆(m)
n0;n functions associatedwith themth preemptive-

repeat-identical queue.
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Proposition 2.6 For each α ∈ C+, and each γ ∈ C+,

∆(m)
n0;n(α,γ, i) = 1{n0≥n}πm(α)n0−n

[
n∏

ℓ=1

pm,iℓ

]
e−

∑n−1
k=1 γkxm,ikNm(α, γn, xm,in)

+ ϕ
(m)
n0;0

(α)

[
n−1∏
ℓ=1

λpm,iℓNm(α, 0, xm,iℓ)

]
λpm,ine

−
∑n−1

k=1 γkxm,ikNm(α, γn, xm,in)

+

min(n0,n−1)∑
k=1

πm(α)n0−k

[
k∏

ℓ=1

pm,iℓ

]
Nm(α, 0, xm,ik)

[
n−1∏

ℓ=k+1

λpm,iℓNm(α, 0, xm,iℓ)

]
× λpm,ine

−
∑n−1

ℓ=1 γℓxm,iℓNm(α, γn, xm,in) (35)

Proof Fix t > 0, and observe that for each γ ∈ C∞
+ , and each i ∈ N∞, we have for each integer n ≥ 1,

1{Q(m)(t)=n,L
(m)
1 (t)=i1,...,L

(m)
n (t)=in}

e−
∑n

k=1 γkW
(m)
k (t)

= 1{L(m)
1 (0)=i1,...,L

(m)
n (0)=in,τ

(m)
n ≤t,τ

(m)
n−1>t,Q(m)(t)=n}e

−
∑n−1

k=1 γkxm,ik e−γnW
(m)
n (t)

+

∫
(0,t]

1{Q(m)(s−)=n−1,L
(m)
1 (s−)=i1,...,L

(m)
n−1(s−)=in−1}

e−
∑n−1

k=1 γkxm,ik e−γnW
(m)
n (t)1{Q(m)(t)=n,τ

(m)
n−1(s)>t}Am,in(ds).

(36)

After taking the expected value of both sides of (36), while applying the Campbell-Mecke formula
to the integral on the right-hand-side, we get

En0

[
1{Q(m)(t)=n,L

(m)
1 (t)=i1,...,L

(m)
n (t)=in}

e−
∑n

k=1 γkW
(m)
k (t)

]
=

[
n∏

ℓ=1

pm,iℓ

]
e−

∑n−1
k=1 γkxm,ikEn0

[
e−γnWn(t)1{τ(m)

n ≤t,τ
(m)
n−1>t,Q(m)(t)=n} | L(m)

n (0) = in

]
+ λpm,in

∫ t

0

Pn0
(Q(m)(s) = n− 1)e−

∑n−1
k=1 γkxm,ikE(1,xm,in )

[
e−γnW1(t−s)1{τ(m)

0 >t−s,Q(m)(t−s)=1}

]
ds.

(37)

Multiplying both sides of (37) by e−αt, the integrating with respect to t over [0,∞) gives

∆(m)
n0;n(α,γ, i) = 1{n0≥n}πm(α)n0−n

[
n∏

ℓ=1

pm,iℓ

]
e−

∑n−1
k=1 γkxm,ikNm(α, γn, xm,in)

+ λpm,ine
−

∑n−1
k=1 γkxm,ikNm(α, γn, xm,in)∆

(m)
n0;n−1(α,0, i). (38)

Applying Proposition 2.5 to (38) proves the claim. ♢

We are now ready to study the joint distribution of Q(t) and {Wk(t); t ≥ 0} for the original
preemptive-repeat-identical queueing system. A proper limiting argument is somewhat cumber-
some to state properly, as it requires a significant amount of new notation, so we will provide an
overall sketch of the idea in order to help readers better understand how it works.

Letting {Q(m)(t); t ≥ 0} and {{W (m)
k (t); t ≥ 0}} denote the queue-length process and the re-

maining amounts of work of each customer present in each slot at time t, one can see from the
construction of these queueing systems that on the set where no arrivals and service completions
ever occur simultaneously, and the number of arrivals in the interval (0, t] is finite (this event occurs
with probability one), there exists an integer m0 ≥ 1 (which may depend on the outcome in the
set) where the order at which customers depart from the system, among those arriving in the in-
terval (0, t], is the same for each integerm ≥ m0. Once this fact has been observed, a bit of thought
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reveals that for each m ≥ m0, the customer found in slot k at time t is the same for all queueing
systems m ≥ m0 (here m0 may depend on t as well as the outcome), and so Q(m)(t) = Q(t) (again
these statements are true for all outcomes on a set having probability one), and by the dominated
convergence theorem, for each α ∈ C+, and each γ ∈ C∞

+ ,

lim
n→∞

En0
[1{Q(m)(t)=n}e

−
∑n

k=1 γkW
(m)
k (t)] = En0

[1{Q(t)=n}e
−

∑n
k=1 γkWk(t)].

The next step of the argument is to show that for each α ∈ C+, and each γ ∈ C+, whenQ(m)(0) =
1 for eachm ≥ 1, with that initial customer possessing an amount of work

B
(m)
0 :=

∞∑
k=1

(k/2m)1{(k−1)/2m<B0≤k/2m}

where B0 has CDF F and is independent of everything else,
∫ τ

(m)
0

0

e−αt1{Q(m)(t)=1}e
−γW

(m)
1 (t)dt

a.s.→
∫ τ0

0

e−αt1{Q(t)=1}e
−γW1(t)dt (39)

asm → ∞, and

e−γB
(m)
0

∫ τ
(m)
0

0

e−αt1{Q(m)(t)=1}dt
a.s→ e−γB0

∫ τ0

0

e−αt1{Q(t)=1}dt (40)

as m → ∞. The argument required to show this is somewhat tedious, but the basic idea is to
consider a decreasing sequence {ϵr}r≥1 ⊂ (0, 1/Re(α)) that converges to zero as r → ∞, and for
each integer r ≥ 1, set tr as that unique positive integer satisfying∫ ∞

tr

e−Re(α)tdt = ϵr

so clearly tr depends on ϵr, and tr → ∞ as r → ∞. Next, note that for each r ≥ 1,

− ϵr +

∫ min(τ
(m)
0 ,tr)

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤
∫ τ

(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤ ϵr +

∫ min(τ
(m)
0 ,tr)

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

and on the event where there are a finite number of arrivals in (0, tr] for each r ≥ 1, and no arrivals
and service completions ever occur simultaneously,

− ϵr +

∫ min(τ0,tr)

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W1(t) cos(Im(γ)W1(t))dt

≤ lim inf
m→∞

∫ τ
(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤ lim sup
m→∞

∫ τ
(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤ ϵr +

∫ min(τ0,tr)

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W1(t) cos(Im(γ)W1(t))dt
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for each r ≥ 1. Letting r → ∞ then yields∫ τ0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W1(t) cos(Im(γ)W1(t))dt

≤ lim inf
m→∞

∫ τ
(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤ lim sup
m→∞

∫ τ
(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

≤
∫ τ0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W1(t) cos(Im(γ)W1(t))dt

which proves
∫ τ

(m)
0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W

(m)
1 (t) cos(Im(γ)W

(m)
1 (t))dt

a.s.→
∫ τ0

0

e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e
−Re(γ)W1(t) cos(Im(γ)W1(t))dt

asm → ∞. A similar argument can be used three additional times, in order to account for the other
cosine and sine terms associatedwith the real and complex parts of each complex number occurring
in the integrand, which will eventually lead to (39). Once (39) has been proven, (40) follows as a
simple consequence of (39), coupled with B

(m)
1 → B1 almost-surely as m → ∞. Finally, by the

dominated convergence theorem, we get

lim
m→∞

E

[∫ τ
(m)
0

0

e−αt1{Q(m)(t)=1}e
−γW

(m)
1 (t)dt

]
= E

[∫ τ0

0

e−αt1{Q(t)=1}e
−γW1(t)dt

]
(41)

and

lim
m→∞

E

[
e−γB

(m)
0

∫ τ
(m)
0

0

e−αt1{Q(m)(t)=1}dt

]
= E

[
e−γB0

∫ τ0

0

e−αt1{Q(t)=1}dt

]
. (42)

In other words,

lim
m→∞

Nm(α, γ) = N(α, γ), lim
m→∞

Mm(α, γ) = M(α, γ).

We now have all of the necessary ingredients needed to state our main result for the joint distri-
bution of Q(t) and {Wk(t)}k≥1 for the preemptive-repeat-identical queueing system.

Theorem 2.4 For each α ∈ C+, and each γ ∈ C∞
+ , we have that for each integer n0 ≥ 0, and each integer

n ≥ 1,

ϕn0;n(α,γ) = ϕn0;0(α)λ
n

[
n−1∏
ℓ=1

M(α, γℓ)

]
N(α, γn)

+

n∑
k=1

1{n0≥k}π(α)
n0−k

[
k−1∏
ℓ=1

β(γℓ)

][
n−1∏
ℓ=k

M(α, γℓ)

]
λn−kN(α, γn)

where
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Proof From Proposition 2.6, it is easy to show that

ϕ(m)
n0;n(α,γ) =

∑
(i1,...,in)∈En

[
n∏

ℓ=1

p
(m)
iℓ

]∫ ∞

0

e−αtEn0

[
1{Q(m)(t)=n,L1(t)=i1,...,Ln(t)=in}e

−
∑n

k=1 γkW
(m)
k (t)

]
dt

= ϕ
(m)
n0;0

(α)λn

[
n−1∏
ℓ=1

Mm(α, γℓ)

]
Nm(α, γn)

+

n∑
k=1

1{n0≥k}πm(α)n0−k

[
k−1∏
ℓ=1

βm(γℓ)

][
n−1∏
ℓ=k

Mm(α, γℓ)

]
λn−kNm(α, γn)

Lettingm → ∞ proves the claim. ♢

Our next objective is to find simpler expressions for both N(α, γ) and M(α, γ). The following
proposition provides us with a computable expression for both N(α, γ, x) andM(α, γ, x).

Proposition 2.7 For each α, γ ∈ C+, and each real x > 0, we have

N(α, γ, x) =
e−γx − e−(λ+α)x

(λ+ α− γ)(1− λ
λ+απ(α)(1− e−(λ+α)x))

. (43)

Likewise,

M(α, γ, x) =
e−γx − e−(γ+λ+α)x

(λ+ α)(1− λ
λ+απ(α)(1− e−(λ+α)x))

. (44)

Proof Assuming Q(0) = 1 andW1(0) = x, we see that∫ τ0

0

e−αs1{Q(s)=1}e
−γW1(s)ds =

∫ min(T1,x)

0

e−αse−γ(x−s)ds+ 1{T1≤x}

∫ τ0

T1+τ1(T1)

e−αs1{Q(s)=1}e
−γW1(s)ds

(45)

Taking the expected value of both sides of (45) and simplifying further gives

N(α, γ, x) =

∫ x

0

e−αse−λse−γ(x−s)ds+

∫ x

0

e−αyπ(α)N(α, γ, x)λe−λydy

=
e−γx(1− e−(λ+α−γ)x)

λ+ α− γ
+ π(α)

λ

λ+ α
(1− e−(λ+α)x)N(α, γ, x)

and after solving for N(α, γ, x), we arrive at (43). Likewise,

M(α, γ, x) = e−γxN(α, 0, x)

which proves (44). ♢

Corollary 2.2 For each α, γ ∈ C+,

N(α, γ) = E

[
e−γB − e−(λ+α)B

(λ+ α− γ)(1− λ
λ+απ(α)(1− e−(λ+α)B))

]

and

M(α, γ) = E

[
e−γB − e−(γ+λ+α)B

(λ+ α)(1− λ
λ+απ(α)(1− e−(λ+α)B))

]
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We close this section by verifying that our results can be used to rederive the steady-state results
recently found in [9]. First,

N(0, 0) = E1

[∫ τ0

0

1{Q(t)=1}dt

]
=

β(−λ)− 1

λ

which in turn implies that for each integer n ≥ 0,

P(Q(∞) = n) = (λN(0, 0))n(1− λN(0, 0)) = (β(−λ)− 1)n(2− β(−λ)).

This agrees with the results found in [9], and note in particular 0 < P(Q(∞) = 0) < 1 if and only if
β(−λ) = E[eλB ] < 2, meaning the amount of work brought by each customer must be light-tailed,
and have a finite moment generating function that is also well-defined at λ. Clearly E[eλB ] > 1 since
F (0) = 0.

Next, observe that for each integer n ≥ 1,

E[1{Q(∞)=n}e
−

∑n
k=1 γkWk(∞)] = (2− β(−λ))

[
n−1∏
ℓ=1

λM(0, γℓ)

]
N(0, γn)

= (2− β(−λ))(β(−λ)− 1)n

[
n−1∏
ℓ=1

M(0, γℓ)

N(0, 0)

]
N(0, γn)

N(0, 0)
.

This formula reveals that, conditional on Q(∞) = n,

E[e−γkWk(∞) | Q(∞) = n] =
M(0, γk)

N(0, 0)
=

β(γk − λ)− β(γk)

β(−λ)− 1

for 1 ≤ k ≤ n− 1, and

E[e−γnWn(∞) | Q(∞) = n] =
N(0, γn)

N(0, 0)
=

λ(β(γn − λ)− 1)

(λ− γn)(β(−λ)− 1)
.

This is in agreement with the results found in [9].

3 Calculating π(α)

We conclude by discussing the problem of calculating π(α) for eachα ∈ C+. For preemptive-resume
queues, it is very well-known that π satisfies the following fixed-point equation: for each α ∈ C+,

π(α) = β(α+ λ(1− π(α))). (46)

Unfortunately, (46) cannot in general be used to derive a useful expression for π(α), yet it is still
possible to use (46) to approximate π(α), assuming β(α) can be evaluated easily.

Suppose first that α > 0. In this case (as explained at the beginning of [5]) we can approximate
π(α) by working with the function Tα : [0, 1] → [0, 1], defined as

Tα(x) := β(α+ λ(1− x)), x ∈ [0, 1]

with T
(n)
α : [0, 1] → [0, 1] defined, for each integer n ≥ 2, as the n-fold convolution of Tα with

itself. Tα is clearly a nondecreasing, continuous function on [0, 1], and when α > 0, π(α) satisfies
T

(n)
α (x) → π(α) as n → ∞. In particular, when 0 ≤ x < π(α),

T (n)
α (x) ≤ T (n+1)

α (x)

for each integer n ≥ 1. Likewise, when π(α) < x ≤ 1,

T (n)
α (x) ≥ T (n+1)

α (x)
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for each integer n ≥ 1, which means π(α) can be calculated using the stopping criterion T
(n)
α (1) −

T
(n)
α (0) < ϵ for some chosen error tolerance ϵ > 0.
This justification no longer works when α ∈ C has a complex component, and so the main point

of [5] is to justify, using probabilistic methods, that T (n)
α (x) → π(α) as n → ∞ for each x ∈ [0, 1], and

each α ∈ C+. Our objective in this section is to show that a very simple coupling argument can be
used to derive a convergence scheme for calculating π(α) for not only the preemptive-resume case,
but both preemptive-repeat cases. The same coupling argument works for all three preemptive
queues we analyze.

3.1 Constructing the Coupling
For each integerN ≥ 1, let {QN (t); t ≥ 0} be the queue-lengh process of a preemptive queue fed by
the same Poisson arrival process {A(t); t ≥ 0}, but assume this queueing system cannot handlemore
than N customers at a time. Next, label each arrival as either altruistic with probability p, or selfish
with probability 1− p, independently of everything else. Both altruistic and selfish customers enter
the system without hesitation whenever they observe N − 1 customers or less in the system upon
arrival: however, if an altruistic customer observes N customers in the system upon arrival, he/she
departs without affecting the system in any way, and if a selfish customer observes N customers in
the system upon arrival, he/she enters the system, and this action causes the server to shut down
permanently, and everyone in the system is stuck there forever (meaning QN (t) = N + 1 for all t
past the arrival time of the selfish customer). Assume that Q(N)(0) = 1 for each N ≥ 1, and let

τN ;k := inf{t ≥ 0 : Q(N)(t) = k}

for each integer k ∈ {0, 1, . . . , N+1}. Finally, for each integerN ≥ 1, we define the LST πN : C+ → C
as

πN (α) := E1[e
−ατN;0 ].

Theorem 3.1 The sequence of hitting times {τN ;0}N≥1 converges almost-surely to τ0 as N → ∞. As a
consequence, for each α ∈ C+,

lim
N→∞

E[e−ατN;0 ] = E[e−ατ0 ].

Proof Fix an outcome ω ∈ B, where

B :=
{

lim
m→∞

Tm = ∞
}
.

Clearly P(B) = 1, so in order to prove this claim, it suffices to show τN ;0(ω) → τ0(ω) asN → ∞, for
each ω ∈ B.
Case 1: Suppose first that ω ∈ B satisfies τ0(ω) < ∞. Given such an ω, there must exists an integer
n0 (possibly depending on ω) such that for each integer n ≥ n0,

Tn(ω) ≥ τ0(ω).

Define the random variable M as

M(ω) := sup
t∈[0,τ0(ω)]

Q(t)

and note that for such ω,

M(ω) ≤ n0(ω) < ∞
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which, from the construction of {Q(N)(t); t ≥ 0}, implies τN ;0(ω) = τ0(ω) for each N ≥ n0(ω), and
so

lim
N→∞

τN ;0(ω) = τ0(ω).

Case 2: Next, suppose ω ∈ B satisfies τ0(ω) = ∞, but M(ω) < ∞. In this case, for each integer
N ≥ M(ω), τN ;0(ω) = τ0(ω) = ∞ and so again, we trivially get

lim
N→∞

τN ;0(ω) = τ0(ω).

Case 3: Finally, suppose ω ∈ B satisfies τ0(ω) = ∞, andM(ω) = ∞. In this case, we can see that for
each integerN ≥ 1, {Q(t, ω); 0 ≤ t ≤ τN ;N+1(ω)} = {Q(N)(t, ω); 0 ≤ t ≤ τN ;N+1(ω)}, which implies

τN+1(ω) = τN ;N+1(ω) ≤ τN ;0(ω)

and since {τN ;N+1(ω)}N≥1 must be a subsequence of {Tk(ω)}, it follows that

lim inf
N→∞

τN ;0(ω) ≥ lim inf
N→∞

τN ;N+1(ω) = lim inf
N→∞

τN+1(ω) = ∞

so again, τN ;0(ω) → τ0(ω) as N → ∞. This proves τN ;0 converges almost surely to τ0 as N → ∞,
and the remaining part of the theorem follows quickly from the dominated convergence theorem. ♢

We are now ready to consider the problem of calculating π(α) for each α ∈ C+. For each α ∈ C+,
and each x > 0, we define the function φ : C+ × (0,∞) → C as

φ(α, x) := E1[e
−ατ0 | B0 = x]

where B0 denotes the amount of work possessed by the single customer present at time zero. Like-
wise, for each integer N ≥ 1 we define the function φN : C+ × (0,∞) → C as

φN (α, x) := E1[e
−ατ

(N)
0 | B0 = x].

Clearly, for each α ∈ C+, it follows that for each integer N ≥ 1,

π(α) =

∫
(0,∞)

φ(α, x)dF (x), πN (α) =

∫
(0,∞)

φN (α, x)dF (x).

3.2 The Preemptive Resume Case
First, observe that when N = 1 and B0 = x, the preemptive-resume queue can only empty if no
selfish customers arrive during his/her service time. In other words,

φ1(α, x) = e−αxe−λ(1−p)x = e−(α+λ(1−p))x

from which we get

π1(α) =

∫
(0,∞)

e−(α+λ(1−p))xdF (x) = β(α+ λ(1− p)).

Next, suppose N ≥ 1: conditioning on the first arrival time after time zero yields

φN+1(α, x) = e−αxe−λx +

∫ x

0

e−αyπN (α)φN+1(α, x− y)λe−λydy

= e−(λ+α)x + πN (α)

∫ x

0

e−α(x−y)φN+1(α, y)λe
−λ(x−y)dy

= e−(λ+α)x + λπN (α)e−(λ+α)x

∫ x

0

e(λ+α)yφN+1(α, y)dy.
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Multiplying both sides of the equation by e(λ+α)x, then taking the partial derivative of both sides
with respect to x yields, after simplifying,

∂

∂x
φN+1(α, x) + (λ+ α)φN+1(α, x) = λπN (α)φN+1(α, x).

Solving this linear, first-order ODE yields

φN+1(α, x) = e−(α+λ(1−πN (α)))x

and so

πN+1(α) = β(α+ λ(1− πN (α))). (47)

This coincides with the recursion found in [5]. Finally, note that our coupling argument yields
limN→∞ πN (α) = π(α) as N → ∞ for each α ∈ C+, and the argument used to establish (47) can be
used to show π(α) satisfies, for α ∈ C+,

π(α) = β(α+ λ(1− π(α))).

3.3 The Preemptive Repeat Different Case
We next use our coupling construction to devise a recursive procedure for calculating π(α) for the
preemptive-repeat different queue. In [15], the authors showhow to express π(α) explicitly in terms
of λ and the service time LST β for each positive real number α ≥ 0, and we will build on their work
slightly by addressing the case where α ∈ C+.

It is not difficult to show that π(α) is a root of a quadratic polynomial, even when α ∈ C+.
Proceeding as in [15], we find that for each x > 0,

φ(α, x) = e−(α+λ)x +

∫ x

0

e−αyπ(α)2λe−λydy

= e−(α+λ)x +

[
λ

∫ x

0

e−(α+λ)ydy

]
π(α)2

= e−(α+λ)x +
λ

λ+ α
(1− e−(α+λ)x)π(α)2.

Integrating both sides over [0,∞)with respect to dF (x) gives

π(α) = β(α+ λ) +
λ

λ+ α
(1− β(α+ λ))π(α)2

which means π(α) satisfies

λ(1− β(α+ λ))π(α)2 − (α+ λ)π(α) + (α+ λ)β(α+ λ) = 0.

The challenge now is to rigorously determine which root corresponds to π(α). If we restrict π so
that it is defined on (0,∞) instead of C+, we get (as shown in [15])

π(α) =
λ+ α−

√
(λ+ α)2 − 4λ(1− β(α+ λ))(λ+ α)β(α+ λ)

2λ(1− β(α+ λ))
(48)

because this restricted version of π is both continuous and nonincreasing on (0,∞).
We suspect (48) is still true for each α ∈ C+, but this needs to be verified rigorously. Fortunately,

our coupling construction can be used to get around this issue. Observe first that for each α ∈ C+,
and each x > 0, the same argument we used for the preemptive-resume queue reveals

φ1(α, x) = e−(α+λ(1−p))x
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and so π1(α) = β(α+ λ(1− p)). Next, for each integer N ≥ 1, conditioning on the first arrival time
after time zero gives

φN+1(α, x) = e−αxe−λx +

∫ x

0

e−αyπN (α)πN+1(α)λe
−λydy

= e−(λ+α)x + λ

[∫ x

0

e−(λ+α)ydy

]
πN (α)πN+1(α)

= e−(λ+α)x +
λ(1− e−(λ+α)x)

λ+ α
πN (α)πN+1(α).

Integrating both sides over (0,∞)with respect to dF (x) yields

πN+1(α) = β(λ+ α) +
λ(1− β(λ+ α))

λ+ α
πN (α)πN+1(α)

i.e.

πN+1(α) =
β(λ+ α)

1− λ(1−β(λ+α))
λ+α πN (α)

.

We have already established from our coupling that πN (α) → π(α) as N → ∞ for each α ∈ C+, so
one way to calculate π(α) is to use this recursion to determine which root the πN (α) terms appears
to converge toward for large N , then use that root as the value for π(α).

3.4 The Preemptive Repeat Identical Case
It remains to derive a recursive procedure for calculating the LST π(α) associated with the preemp-
tive repeat identical queue. Again, we begin by observing that for each α ∈ C+, and each x > 0,

φ1(α, x) = e−αxe−λ(1−p)x = e−(α+λ(1−p))x

which implies
π1(α) = β(α+ λ(1− p)).

Next, for each integer N ≥ 1, conditioning on B0 gives

φN+1(α, x) = e−αxe−λx +

∫ x

0

e−αyπN (α)φN+1(α, x)λe
−λydy

= e−(λ+α)x + λ

[∫ x

0

e−(λ+α)ydy

]
πN (α)φN+1(α, x)

= e−(λ+α)x +
λ(1− e−(λ+α)x)

λ+ α
πN (α)φN+1(α, x)

which yields

φN+1(α, x) =
e−(λ+α)x

1− λ
λ+α (1− e−(λ+α)x)πN (α)

.

Finally, integrating over [0,∞)with respect to dF (x) yields

πN+1(α) = E

[
e−(λ+α)B0

1− λ
λ+α (1− e−(λ+α)B0)πN (α)

]
. (49)

Unfortunately, the expected value found on the right-hand-side of (49) may not be tractable in
general, so numerical integration methods will be needed in order to approximate the expectation
at each step of the recursion. On the other hand, if B0 is a finite, discrete random variable, the
recursion becomes somewhat easier to use. Obviously, the limit π(α) satisfies

π(α) = E

[
e−(λ+α)B0

1− λ
λ+α (1− e−(λ+α)B0)π(α)

]
.
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