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Tightening Quadratic Convex Relaxations for the
AC Optimal Transmission Switching Problem

Cheng Guo, Harsha Nagarajan, and Merve Bodur

Abstract—The Alternating Current Optimal Transmission
Switching (ACOTS) problem incorporates line switching deci-
sions into the fundamental AC optimal power flow (ACOPF)
problem. The advantages of the ACOTS problem are well-
known in terms of reducing the operational cost and improving
system reliability. ACOTS optimization models contain discrete
variables and nonlinear, non-convex structures, which make
it difficult to solve. We derive strengthened quadratic convex
(QC) relaxations for ACOTS by combining several methodologies
recently developed in the ACOPF literature. First, we relax
the ACOTS model with the on/off QC relaxation, which has
been empirically observed to be both tight and computationally
efficient in approximating the ACOPF problem. Further, we
tighten this relaxation by using strong linearization with extreme-
point representation, and by adding several types of new valid
inequalities. In particular, we derive a novel kind of on/off cycle-
based polynomial constraints, by taking advantage of the network
structure. Those constraints are linearized using convex-hull
representations and implemented in an efficient branch-and-cut
framework. We also tighten the relaxation using the optimization-
based bound tightening algorithm. Our extensive numerical
experiments on medium-scale PGLib instances show that, com-
pared with the state-of-the-art formulations, our strengthening
techniques are able to improve the quality of ACOTS relaxations
on many of the PGLib instances, with some being substantial
improvements.

Index Terms—Transmission line switching, Quadratic convex
relaxation, Convex hull, Optimization-based bound tightening.

I. INTRODUCTION

Transmission switching, with its inception in the 1980s
[1], has gained considerable attention in both industry and
academia in recent years [2, 3]. The optimal transmission
switching (OTS) problem studies how to switch on or off
certain transmission lines to modify the network topology in
the real-time operation of transmission power grids. Solving
the OTS problem brings several benefits that the traditional
optimal power flow (OPF) problem solution cannot offer, such
as reducing the total operational cost, mitigating transmission
congestion, clearing contingencies, and improving engineering
limits [4]. Thus, as the modern transmission control and relay
technologies evolve, transmission line switching has become
an important option in power system operators’ toolkits.

Previous literature on OTS has mainly relied on the DC
approximation of the power flow model to avoid the mathemat-
ical complexity of the non-convex AC power flow equations.
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The first formal mathematical model for the OTS problem,
proposed in [5], is based on the DC approximation of the
power flow equations. In [6], the authors derive a cycle-
induced relaxation for a DCOTS model, and characterize the
convex hull of this relaxation.

The downside of DCOTS approximation is that the optimal
decisions may not necessarily represent accurate power flows
or even be infeasible in the AC setting [7]. Those drawbacks
motivate the adoption of ACOTS. The ACOTS problem can be
formulated as a non-convex mixed-integer nonlinear program
(MINLP), which is challenging to solve. Moreover, even in
the DC setting, the OTS problem is known to be NP-hard
[8]. Several heuristics are proposed for solving the ACOTS
problem, e.g., by [9] and [10]. Separately, convex relaxations
for ACOTS have gained significant attention in recent years.

The convex relaxations of the ACOTS problem, of which
the literature is quite scarce, are built upon the rich literature
on ACOPF convex relaxations, such as the second-order cone
(SOC) relaxation [11], the quadratic convex (QC) relaxation
[12], and the semi-definite programming (SDP) relaxation
[13]. For the ACOPF problem, the standard SDP and QC
relaxations are at least as strong as the SOC relaxation,
while the strength of the SDP and QC relaxations are not
comparable. Computationally, the SOC and QC relaxations
are faster and more reliable than the SDP relaxation [12]. In
the ACOTS setting, [14, 15] propose a QC relaxation that
incorporates on/off decision variables, which provides a tight
lower bound to the generation-cost minimization objective. We
further tighten this on/off version of the QC relaxation with a
much stronger linearization and valid inequalities, with some
of the latter being novel.

In particular, one type of valid inequalities we incorporate is
cycle-based polynomial constraints (“lifted cycle constraints”
for short). The lifted cycle constraints were first proposed
by [16] as a relaxation to the arc-tangent constraints in
ACOPF. Their work provides a reformulated SOC relaxation
for ACOPF, strengthened by the McCormick relaxation of the
lifted cycle constraints, which is shown to be incomparable to
the SDP relaxation. Further, these cycle-based valid inequal-
ities were generalized for the ACOTS problem in [3], which
was derived in the rectangular co-ordinates. However, in our
work, we develop a new type of lifted cycle constraints based
on the QC relaxation of the ACOPF problem, written in polar
co-ordinates. Our method takes advantage of the direct access
to auxiliary variables representing the trigonometric functions
in the QC relaxation. Then we reformulate the on/off version
of those lifted cycle constraints for the ACOTS problem, which
is new in the literature. In our strengthened formulation, we
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combine those new constraints and the lifted cycle constraints
from [3]. Further, we linearize these polynomial constraints
with the tightest extreme-point representation, which captures
the convex hull of the lifted cycle constraints for a given cycle.

We further improve the bounds using an optimization-based
bound tightening (OBBT) technique. OBBT is often used in
MINLPs to tighten relaxation bounds [17]. It has been shown
to be an effective bound-tightening method in nonlinear AC
power flow models. In [18], the authors use OBBT to tighten
an ACOPF-QC relaxation. In [15], the authors use OBBT
for an ACOTS-QC relaxation with nonlinear terms linearized
using weaker recursive-McCormick relaxations. In our work,
we incorporate all the proposed tightening valid inequalities
and the ones from the literature within OBBT, to achieve a
very tight lower bound for the ACOTS problem.

Our main contributions can be summarized as follows:
(1) We strengthen the ACOTS-QC relaxation with sev-

eral techniques. First, we linearize the on/off trilinear terms
with the tight extreme-point representation. To the best of
our knowledge, we are the first to adapt this linearization
method to ACOTS. We also reformulate several ACOPF-
QC strengthening constraints for the OTS setting, some of
which are novel. Compared with the state-of-the-art on/off
QC relaxation formulation [19], our strengthened relaxation
is shown to provide better lower bounds for many test cases,
and some of those improvements are substantial.

(2) We incorporate lifted cycle constraints to further tighten
the strengthened ACOTS-QC relaxation. We also derive a
novel type of lifted cycle constraint that strengthens the QC
relaxations of both ACOPF and ACOTS. We linearize those
constraints with the extreme-point representation, which is
always tighter than the recursive-McCormick relaxation in the
literature. Also, we develop a branch-and-cut framework to
efficiently incorporate expensive lifted cycle constraints, which
can deal with discrete decisions in the separation process and
resulting in significant solution time reductions.

(3) Finally, we use OBBT to further tighten the ACOTS-
QC relaxation in conjunction with the branch-and-cut frame-
work for cycle constraints. Combined with other strengthening
methods listed in (1) and (2), we obtain the tightest ACOTS
relaxation in the literature, to the best of our knowledge.

II. PROBLEM FORMULATIONS

NOMENCLATURE

A. Sets and parameters

N Set of buses (nodes).
NL Set of leaf buses with no loads.
N ref Set of reference buses.
G Set of generators.
Gi Set of generators at bus i.
A Set of lines (arcs).
AR Set of arcs in reversed direction.
c0, c1, c2 Generation cost coefficients.
j Unit imaginary number.
Y ij = gij + jbij Admittance on line (i, j).
Y c
ij = gcij + jbcij Charging admittance on line (i, j).

Y s
ij = gsij + jbsij Shunt admittance on line (i, j).

T ij = tRij + jtIij Branch complex transformation ratio
(tap ratio) on line (i, j).

Sd
i = pdi + jqdi AC power demand at bus i.
sij Apparent power bound on line (i, j).
θij ,θij Phase angle difference bounds on line

(i, j).
vi,vi Voltage magnitude bounds at bus i.
Sg
i , S

g

i Power generation bounds at bus i.
lij Current magnitude squared upper limit

on line (i, j).

B. Variables

vi Voltage magnitude at bus i.
θi Voltage angle at bus i.
Vi = vie

jθi AC complex voltage at bus i.
θij Phase angle difference on line (i, j).
wi Squared voltage magnitude at bus i.
Wij = wRij + jwIij AC voltage product on line (i, j).
Sij = pij + jqij AC power flow on line (i, j).
Sgk = pgk + jqgk AC power generation of generator k.
lij Current magnitude squared on line

(i, j).
zij Binary line switching decision for line

(i, j) that equals 1 if the line is
switched on, and 0 otherwise.

Throughout, constants are typeset in boldface to make it eas-
ier to distinguish between decision variables and parameters.
In the AC power flow equations, upper case letters represent
complex quantities. R(·) and T(·) respectively denote the real
and imaginary parts of a complex number. Given any two
complex numbers (variables/constants) z1 and z2, z1 > z2
implies R(z1) > R(z2) and T(z1) > T(z2). | · | and (·)∗
represent the magnitude and Hermitian conjugate of a complex
number, respectively. When applied on a real-valued number,
| · | represents its absolute value. 〈·〉R represents the convex
envelope of a function.

C. The ACOTS Problem

The power network can be represented with the graph G =
(N ,A), where N corresponds to the set of buses, while the set
of arcs A corresponds to the set of lines. Note that we assume
lines in the network are directed with designated from/to buses,
as indicated by the data. This assumption is conventional, and
it is necessary because the data contains asymmetric shunt
conductance and transformers.

The ACOTS problem minimizes the total production cost of
generators such that all the demands at the buses, the physical
constraints (e.g., Ohm’s and Kirchoff’s law), and engineering
limit constraints (e.g., transmission line flow limits) are satis-
fied. In this work, for the purpose of the QC relaxation (see
Section III), we model the AC power flow equations [20] in
polar co-ordinates, thus the following ACOTS formulation:

min
∑
k∈G

(
c2k(pgk)2 + c1kp

g
k

)
+

∑
i∈N\NL

∑
k∈Gi

c0k

+
∑
i∈NL

∑
k∈Gi

c0kz{ft|(f,t)∈A,f=i or t=i} (1a)
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s.t.
∑
k∈Gi

Sgk − S
d
i − Y

s∗
ij wi =

∑
(i,j)∈A∪AR

Sij

∀i ∈ N (1b)

Sij = (Y ij + Y c
ij)
∗ wi
|T ij |2

zij − Y ∗ij
Wij

T ij

∀(i, j) ∈ A (1c)

Sji = (Y ij + Y c
ji)
∗wjzij − Y ∗ij

W ∗ij
T ∗ij
∀(i, j) ∈ A (1d)

wi = v2i ∀i ∈ N (1e)
Wij = ViV

∗
j zij ∀(i, j) ∈ A (1f)

θij = θi − θj ∀(i, j) ∈ A (1g)

θijzij − θ
M(1− zij) 6 θij 6 θijzij + θM(1− zij)

∀(i, j) ∈ A (1h)

θi = 0 ∀i ∈ N ref (1i)

Sg
i 6 Sgk 6 S

g

k ∀k ∈ G (1j)

|Sij |26 s2ijz2ij , |Sji|26 s2ijz2ij ∀(i, j) ∈ A (1k)

vi 6 vi 6 vi ∀i ∈ N (1l)
zij ∈ {0, 1} ∀(i, j) ∈ A, (1m)

where z{ft|(f,t)∈A,f=i or t=i} is the switch on/off variable for
a line having either end connected to a leaf node with 0 load.
When such a line is switched off, the generators on the leaf
node are disconnected from the network, and thus we do not
need to pay the fixed cost c0k.

The convex quadratic objective (1a) minimizes total gener-
ator dispatch cost. Constraints (1b) correspond to the power
balance at each bus, i.e., Kirchoff’s current law. Constraints
(1c) to (1f) model the power flow on each line. Note that
constraints (1c) and (1d) ensure that the power flow over line
(i, j) is zero if the line is switched off; constraints (1f) ensure
that Wij = 0 when line (i, j) is switched off. Constraints (1g)
connect voltage angle and voltage difference variables.

Constraints (1h) limit the phase angle difference on each
line. We define θuij = max(|θij |, |θij |). Let θu,max

ij,k be the kth
largest value in {θuij | (i, j) ∈ A}, and θM =

∑|N |−1
k=1 θu,max

ij,k

be a big-M constant for phase angle difference. This big-
M constant enables us to provide proper bounds for θij in
constraints (1h).

Constraints (1i) set the voltage angles of reference buses to
0. Constraints (1j) restrict the apparent power output of each
generator. Constraints (1k) are thermal limit constraints that
restrict the total electric power transmitted on each line. Note
that in these constraints a squared form of zij is used instead
of the linear form, as it produces a tighter formulation [14].
Constraints (1l) limit the voltage magnitude at each bus.

This ACOTS model is a non-convex MINLP, which contains
nonlinear constraints (1c) through (1f). A straightforward
method to linearize constraints (1c) and (1d) is to introduce
a lifted variable wzij per line, which equals wi when zij = 1
and 0 otherwise, then constraints (1c) and (1d) can be replaced
with the following linear constraints for every line (i, j) ∈ A:

Sij = (Y ij + Y c
ij)
∗ wzij
|T ij |2

− Y ∗ij
Wij

T ij
(2a)

Sji = (Y ij + Y c
ji)
∗wzji − Y

∗
ij

W ∗ij
T ∗ij

(2b)

wi − (1− zij)v2i 6 wzij 6 wi − (1− zij)v2i (2c)

wj − (1− zij)v2j 6 wzji 6 wj − (1− zij)v2j (2d)

v2i zij 6 wzij 6 v
2
i zij (2e)

v2jzij 6 wzji 6 v
2
jzij . (2f)

Constraints (2a) - (2d) are from [14], while constraints (2e)
and (2f) are new and provide tighter bounds for wzij and wzji.
Tractable convex relaxations for constraints (1e) and (1f) are
described in the next section.

III. ON/OFF QUADRATIC CONVEX RELAXATION

The on/off version of the QC relaxation for the ACOTS
model relaxes nonlinear constraints (1e) and (1f). Let wRij :=
R(Wij) and wIij := T(Wij), then (1f) can be equivalently
written as follows (∀(i, j) ∈ A):

wRij = zij (vivj cos(θij)) (3a)

wIij = zij (vivj sin(θij)) . (3b)

A key feature of the QC relaxation is the use of polar co-
ordinates, which has direct access to voltage magnitude vi and
voltage angle θi variables. This enables stronger links between
voltage variables. In what follows, we list the QC relaxation
constraints, some of which are based on previous works [12,
14], while others are newly derived, which we will specify.

(1) Quadratic function relaxation (∀i ∈ N ): We can formu-
late the convex-hull envelope for constraints (1e) by relaxing
every equality in to a quadratic inequality constraint (4a),
and providing upper bounds via linear McCormick relaxation
constraints in (4b):

wi > v2i (4a)
wi 6 (vi + vi)vi − vivi (4b)

(2) Cosine and sine function relaxations (∀(i, j) ∈ A): The
trigonometric term cos(θij) in (3a) is non-convex. We define
a lifted variable cij that is in the convex envelope of cos(θij),
i.e., cij ∈ 〈cos(θij)〉R. We assume θuij 6 π/2, which is
reasonable as the absolute value of the phase angle differences
across the lines is usually under 15 degrees in practice [21].
We define the following constants for every line (i, j) ∈ A
which are necessary for the relaxation constraints:

θcij =
cos(θij)− cos(θij)

θij − θij
, θsij =

sin(θij)− sin(θij)

θij − θij
Following the disjunctive programming method in [14], an
on/off version of the convex relaxation of the cosine function
is as follows:

− cij + θcijθij 6
(
θcijθij − cos(θij)

)
zij +

∣∣θcij∣∣θM(1− zij)

(5a)

cij 6 zij −
1− cos(θuij)

(θuij)
2

θ2ij +
1− cos(θuij)

(θuij)
2

(θM)2(1− zij)

(5b)
cijzij 6 cij 6 cijzij . (5c)
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Constraints (5a) and (5b) are big-M constraints. When zij = 1,
they represent quadratic convex relaxations of cos(θij) derived
from trigonometric identities and properties of quadratic func-
tions, and those convex relaxations are not valid when the
line (i, j) is switched off, as we have cij = 0. Therefore, big-
M parameter θM is used to ensure that when zij = 0, those
constraints are valid for cij = 0 and θij ∈ [θij ,θij ]. Constraint
(5c) provides bounds for cij , and ensure that cij = 0 when
the line (i, j) is switched off. Note that constraint (5a) is a
new constraint that is not in [14, 15].

Similarly, we define sij ∈ 〈sin(θij)〉R. When θuij 6 π/2, a
disjunctive relaxation of the sine function is as follows:

sij − cos

(
θuij
2

)
θij 6

(
sin

(
θuij
2

)
− cos

(
θuij
2

)
θuij
2

)
zij

+ cos

(
θuij
2

)
θM(1− zij), if θij > 0

(6a)

−sij + cos

(
θuij
2

)
θij 6

(
sin

(
θuij
2

)
− cos

(
θuij
2

)
θuij
2

)
zij

+ cos

(
θuij
2

)
θM(1− zij), if θij 6 0

(6b)

sij − θsijθij 6
(
−θsijθij + sin(θij)

)
zij + θsijθ

M(1− zij),
if θij 6 0

(6c)

−sij + θsijθij 6
(
θsijθij − sin(θij)

)
zij + θsijθ

M(1− zij),
if θij > 0

(6d)
sijzij 6 sij 6 sijzij , (6e)

where constraints (6a) - (6d) are derived from linear outer
approximation of the sin(θij) function [14].

(3) Extreme-point representation for summation of on/off tri-
linear terms (∀(i, j) ∈ A): Next, we substitute the non-convex
functions cos(θij) and sin(θij) in constraints (3) with lifted
variables cij and sij and their convex envelopes, respectively.
The remaining non-linearities reduce to trilinear terms vivjcij
and vivjsij , which are further controlled by the status of the
on/off variable zij . To linearize these terms, we generalize the
convex hull representation of the extreme-point formulation
[18, 22] to incorporate on/off variables, as discussed below.

Let the extreme points of the domain [vi,vi] × [vj ,vj ] ×
[cij , cij ] be denoted by ξk with k = 1, . . . , 8, and the extreme
points of the domain [vi,vi]× [vj ,vj ]× [sij , sij ] be denoted
by γk, k = 1, . . . , 8. We relax constraints (3) as follows:

wRij =

8∑
k=1

λcij,k (ξk1ξ
k
2ξ
k
3), wIij =

8∑
k=1

λsij,k (γk1γ
k
2γ

k
3) (7a)

8∑
k=1

λcij,kξ
k
1 + (1− zij)vi 6 vi 6

8∑
k=1

λcij,kξ
k
1 + (1− zij)vi

(7b)
8∑
k=1

λsij,kγ
k
1 + (1− zij)vi 6 vi 6

8∑
k=1

λsij,kγ
k
1 + (1− zij)vi

(7c)

8∑
k=1

λcij,kξ
k
2 + (1− zij)vj 6 vj 6

8∑
k=1

λcij,kξ
k
2 + (1− zij)vj

(7d)
8∑
k=1

λsij,kγ
k
2 + (1− zij)vj 6 vj 6

8∑
k=1

λsij,kγ
k
2 + (1− zij)vj

(7e)

cij =

8∑
k=1

λcij,k ξ
k
3 , sij =

8∑
k=1

λsij,k γ
k
3 (7f)

8∑
k=1

λcij,k = zij ,

8∑
k=1

λsij,k = zij , λcij,k > 0, λsij,k > 0

∀k = 1, . . . , 8 (7g)
λcij,1 + λcij,2 − λsij,1 − λsij,2
λcij,3 + λcij,4 − λsij,3 − λsij,4
λcij,5 + λcij,6 − λsij,5 − λsij,6
λcij,7 + λcij,8 − λsij,7 − λsij,8


> 
vi · vj
vi · vj
vi · vj
vi · vj

 = 0, (7h)

where ξk1 is the value of vi in the extreme point ξk. The
constants ξk2 , ξk3 , γk1 , γk2 , and γk3 are similarly defined. λcij,k
and λsij,k are auxiliary multiplier variables for representing
a linear combination of the extreme points. When zij = 1,
constraints (7a) connect values of wRij and wIij with convex
combinations of extreme points for trilinear terms; constraints
(7b) - (7f) equate the values of vi, vj , cij , and sij to
convex combinations of their respective extreme points in
[vi,vi] × [vj ,vj ] × [cij , cij ]. When zij = 0, constraints (7a)
- (7f) enforce wRij = wIij = cij = sij = 0, and impose
no constraints on vi and vj . Constraints (7g) ensure that
the summations of convex combination coefficients equal to
1 when line (i, j) is switched on, and all the coefficients
become 0 when the line is switched off. Linking constraints
(7h) connect the shared bilinear term vivj that appears in both
trilinear terms vivj cos(θij) and vivj sin(θij).

Note that when zij = 1, constraints (7b) - (7e) and (7g)
reduce to the following constraints, akin to the ones derived
in [18, 22]:

vi =

8∑
k=1

λcij,kξ
k
1 =

8∑
k=1

λsij,kγ
k
1 , (8a)

vj =

8∑
k=1

λcij,kξ
k
2 =

8∑
k=1

λsij,kγ
k
2 , (8b)

8∑
k=1

λcij,k = 1,

8∑
k=1

λsij,k = 1. (8c)

We next formally show that the constraints in (7) form the
tightest, or the convex hull, relaxation for the summation of
nonlinear terms of the form

zij (a1vivjcij + a2vivjsij) ∀(i, j) ∈ A ∪AR. (9)

Note that this form appears in constraints (1c) and (1d), where
a1 and a2 represent coefficients that are functions of gij , bij ,
tRij , and tIij . For this purpose, we define the following: Let η =
(wRij , w

I
ij , cij , sij , λ

c
ij,1, . . . , λ

c
ij,8, λ

s
ij,1, . . . , λ

s
ij,8, zij , vi, vj)
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and define the set H = {η|η satisfies (7), zij ∈ [0, 1]}. When
zij = 0 and zij = 1, H becomes H0 and H1, respectively:

H0 =

 η

∣∣∣∣∣∣
wRij = wIij = cij = sij = zij = 0
λcij,k = λsij,k = 0,∀k = 1, · · · , 8
vi ∈ [vi,vi], vj ∈ [vj ,vj ]


H1 = {η |η satisfies (7a), (7f), (7h) and (8)}

In [18], for a simpler case when zij = 1, it was shown
that the linearization defined by H1 is the convex hull of
the summation terms in (9) due to the addition of equality
constraints (7h). However, to understand the tightness (convex
hull property) of the linearization (7) for the generalized
ACOTS model, we present the following theorem, based
on the literature of perspective formulations for disjunctive
programming [23, 24]:

Theorem III.1. H = conv(H0 ∪H1).

The proof is included in the Appendix.
To the best of our knowledge, this is the first attempt at

applying the convex hull-based extreme-point formulation for
the ACOTS QC relaxation. Previous works [14, 15, 25] have
utilized recursive McCormick-based relaxations which are not
as tight as the above formulation, as the former relaxation
when applied to (9) is not as tight as H1.

(4) Other valid constraints for strengthening the on/off QC
relaxation (∀(i, j) ∈ A): We also add the following constraints
to strengthen the on/off QC relaxation:

tan(θij)w
R
ij 6 wIij 6 tan(θij)w

R
ij (10a)

vσi v
σ
j (cos(φij)w

R
ij + sin(φij)w

I
ij)− vj cos(δij)v

σ
i w

z
ij

− vi cos(δij)v
σ
i w

z
ji ≥ vivj cos(δij)(vivj − vivj)zij

(10b)

vσi v
σ
j (cos(φij)w

R
ij + sin(φij)w

I
ij)− vj cos(δij)v

σ
i w

z
ij

− vi cos(δij)v
σ
i w

z
ji ≥ vivj cos(δij)(vivj − vivj)zij

(10c)

|Sij |26
wi
|T ij |2

lij (10d)

lij = |Y ij |2
(

wzij
|T ij |2

+ wzji − 2(tRijw
R
ij + tIijw

I
ij)/|T ij |2

)
−
|Y c

ij |2

|T ij |2
wzij + 2(gcijpij − b

c
ijqij) (10e)

0 6 lij 6 lij , (10f)

where vσi = vi + vi, φij = (θij + θij)/2, and δij = (θij −
θij)/2. Constraint (10a) is the phase angle difference con-

straint, which is a relaxation of the equality tan(θij) =
wR

ij

wI
ij

.
Constraints (10b) and (10c) are the “lifted nonlinear cuts” from
[15], derived using trigonometric identities. Constraints (10d)
and (10e) use the relationship between current magnitude and
power flow to tighten the QC relaxation. (10f) bounds the
squared current magnitude. Note that while (10a), (10d), and
(10f) are the same as their counterparts in the ACOPF model,
they are still valid for the ACOTS setting. On the other hand,
(10b), (10c), and (10e) are modified under the ACOTS case, so
that when line (i, j) is switched off, constraints (10b) and (10c)

become redundant, while constraint (10e) ensures lij = 0. The
use of (10e) is new for the ACOTS QC relaxation.

Putting all the constraints together, we obtain a QC relax-
ation for the ACOTS problem:

(ACOTS-QC) : min (1a) (11a)
s.t. (1b), (1g)− (1m), (2), (11b)

(4), (5)− (7), (10). (11c)

The relationship between the solution sets of different for-
mulations is simplified and shown in Figure 1. Here, ACOPF
is the non-convex polar formulation, which is equivalent to the
ACOTS model with all the lines switched on; ACOPF-QC is
the QC relaxation for ACOPF from [12].

Fig. 1: Venn diagram for solution sets of different formulations.

IV. CYCLE-BASED ON/OFF POLYNOMIAL CONSTRAINTS

In this section, we present a novel type of lifted cycle
constraints based on lifted trigonometric auxiliary variables
cij and sij . We use both these new lifted cycle constraints
and lifted cycle constraints with voltage product variables wRij ,
wIij , and wi from [16] to strengthen the on/off QC relaxation
for ACOTS. Since those constraints are polynomial functions
in multilinear terms, we linearize them with the extreme-point
representation.

A. Formulating Lifted Cycle Constraints

The lifted cycle constraints are formulated based on the
fact that for any given cycle C in the transmission network,
the voltage angle differences of all lines in C sum up to 0.
More formally, let (v̂1, v̂2, . . . , v̂n, v̂1) be a vertex sequence
for the cycle C of length n, and let the cycle be represented
by its lines: C = {(v̂1, v̂2), (v̂2, v̂3), . . . , (v̂n, v̂1)}, then we
have

∑
(i,j)∈C θij = 0.

The method we use to derive lifted cycle constraints for the
QC relaxation is similar to [16] where lifted cycle constraints
for the SOC relaxation are derived. However, unlike in the
SOC relaxation, the main advantage of the QC relaxation is
that we have direct access to both (cij , sij) and (wRij , w

I
ij)

variables, which enable us to formulate additional lifted cycle
constraints that could further enhance the relaxation quality.

In what follows, we derive lifted cycle constraints for cycles
with 3 and 4 nodes. We call the resulting constraints as 3-cycle
constraints and 4-cycle constraints, respectively. We first de-
velop those constraints without considering switching (on/off)
decisions, and then demonstrate how to reformulate them to
include those decisions using a tight big-M formulation.
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1) 3-Cycle Constraints: For a cycle of three nodes i, j and
k, we have θij+θjk+θki = 0 or equivalently θik = θij+θjk,
which indicates that cos(θik) = cos(θij + θjk) and sin(θik) =
sin(θij + θjk). Expanding the right-hand sides and replacing
the trigonometric functions with their corresponding lifted
variables, we get the following nonlinear 3-cycle constraints:

cik = cijcjk − sijsjk (12a)
sik = cijsjk + sijcjk, (12b)

Though simple, these are novel and are applicable to both
ACOPF and ACOTS problems. We can then obtain the lifted
cycle constraints in [16] by multiplying both sides of (12a)
and (12b) with viv2j vk, and using the relationships in (1e) and
(3) (ignoring switching decisions in (3) for now):

wjw
R
ik = wRijw

R
jk − wIijwIjk, (13a)

wjw
I
ik = wRijw

I
jk + wIijw

R
jk. (13b)

Alternatively, constraints (13) can also be derived from minor-
based reformulation as in [26].

For brevity, in the following, we call lifted cycle constraints
with cij and sij variables as lifted cycle constraints in the c-
s space, and lifted cycle constraints with wRij , w

I
ij , and wi

variables as lifted cycle constraints in the w space.
We also derive two more sets of lifted cycle constraints by

considering other permutations of the equality θij+θjk+θki =
0, including θjk + θki = θji and θki + θij = θkj . Though
they look equivalent in the nonlinear forms, the linearized
versions (see Section IV-B) of these permutated constraints
do not necessarily dominate one another, and we add all of
them to tighten the relaxation.

Another type of lifted cycle constraints can be derived from
the equality θij + θjk − θik = 0, which leads to the following
constraints in the c-s space:

cijcjkcik + cijsjksik − sijsjkcik + sijcjksik = 1 (14a)
sijcjkcik + sijsjksik + cijsjkcik − cijcjksik = 0. (14b)

The following proposition shows the equivalence between
constraints (12) and (14). This proposition is similar to the
Proposition 4.1 in [16], but our result is in the c-s space rather
than the w space, and we simplify the presentation of the
result. Also, we provide a new way to prove this result.

Proposition IV.1. For all (i, j) ∈ A, if cij and sij satisfy c2ij+
s2ij = 1, then {(c, s) : (12) holds} = {(c, s) : (14) holds}.

Proof. We first prove that {(c, s) : (12) holds} ⊆ {(c, s) :
(14) holds}. If the variables c and s satisfy (12a)-(12b), we
multiply both sides of (12a) with cik and both sides of (12b)
with sik, then sum up those two equations:

c2ik + s2ik = cikcijcjk − ciksijsjk + sikcijsjk + siksijcjk.

Since the left-hand side is equal to 1, this equation is
equivalent to constraint (14a). Similarly, we obtain constraint
(14b) by multiplying both sides of (12a) with sik and both
sides of (12b) with cik, and deduct the second equation from
the first.

For the reverse direction, if c and s satisfy (14), let a =
cijcjk − sijsjk and b = cijsjk + sijcjk, we can rewrite (14a)

and (14b) as cika+sikb = 1 and cikb−sika = 0, respectively.
Solving for a and b, we get a = cik and b = sik, which are
equivalent to constraints (12a)-(12b).

2) 4-Cycle Constraints: For a 4-cycle with nodes
{i, j, k, l}, we similarly derive lifted cycle constraints based
on the equality θij +θjk+θkl+θli = 0. More specifically, for
the permutation θij + θkl = θil− θjk, we derive the following
lifted cycle constraints

cijckl − sijskl = cilcjk + silsjk (15a)
cijskl + sijckl = −cilsjk + silcjk (15b)

wRijw
R
kl − wIijwIkl = wRilw

R
jk + wIilw

I
jk (15c)

wRijw
I
kl + wIijw

R
kl = −wRilwIjk + wIilw

R
jk. (15d)

For the other two permutations, i.e., θij + θjk = θil − θkl
and θjk + θkl = θil − θij , we can derive similar lifted cycle
constraints. Note that for those permutations, the lifted cycle
constraints in the w space contain trilinear terms, thus we
do not include those constraints in our implementation for
efficiency purposes.

3) On/off cycle constraints for ACOTS: To reformulate
lifted cycle constraints for ACOTS and include switching
decisions, we use the big-M formulation. As an example, we
demonstrate the formulation on constraints (12), i.e., the 3-
cycle constraints in the c-s space. Constraints (12) are only
valid when all lines in the 3-cycle C are switched on, which
is ensured by the following big-M constraints:

− 3ẑ 6 cik − cijcjk + sijsjk 6 3ẑ (16a)
− 3ẑ 6 sik − cijsjk − sijcjk 6 3ẑ. (16b)

Here, ẑ =
∑

(l,m)∈C(1 − zlm) and we use ‘3’ as the big-M
constant. It is valid because cij ∈ [0, 1] and sij ∈ [−1, 1] for
the worst-case bounds of θij ∈ [−π2 ,

π
2 ]. Although, this could

be further improved if the angle-difference bounds are tighter.
We also include similar on/off constraints for all 4-cycles with
appropriate big-M constants.

B. Extreme-Point Representation

The lifted cycle constraints contain bilinear terms, which are
usually linearized with McCormick relaxation in the literature
[6, 26]. We instead use the extreme-point representation to
linearize those constraints, which is guaranteed to capture the
convex hull of the lifted cycle constraints for a given cycle
(including all permutations in the c-s or w space).

For example, let xci ∀i = 1, . . . , 6 represent variables
cij , cjk, cik, sij , sjk, sik, respectively. We first rewrite 3-cycle
constraints (12) and its counterparts by permutation as follows:

xc3 = xc1x
c
2 − xc4xc5, xc6 = xc1x

c
5 + xc2x

c
4 (17a)

xc1 = xc2x
c
3 + xc5x

c
6, xc4 = xc2x

c
6 − xc3xc5 (17b)

xc2 = xc1x
c
3 + xc4x

c
6, xc5 = xc1x

c
6 − xc3xc4. (17c)

Let binary variable yC equal 1 if and only if all lines in
the cycle C = {(i, j), (j, k), (k, i)} are switched on. xcj1j2 is a
lifted variable for xcj1x

c
j2

. We can linearize the constraint xc3 =
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xc1x
c
2 − xc4xc5 and connect the constraint with line switching

decisions as follows:

min(0,xc
3)(1− yC) 6 xc3 − xc12 + xc45 6 max(0,xc

3)(1− yC).
(18)

We will explain this constraint in more detail at the end of
this section after introducing constraints (19). Other constraints
in (17) can be linearized in a similar way.

In addition to the linearization above, we have the following
constraints in the extreme-point representation for constraints
(17) (with switching decisions added):

64∑
i=1

λcsi = yC , λcsi > 0 ∀i = 1, . . . , 64 (19a)

xcj ≥ xc
j

 ∑
i:(X i

j=xc
j )

λcsi

+ xc
j

 ∑
i:(X i

j=xc
j )

λcsi


+ min(0,xc

j )(1− yC) ∀j = 1, . . . , 6 (19b)

xcj 6 x
c
j

 ∑
i:(X i

j=xc
j )

λcsi

+ xc
j

 ∑
i:(X i

j=xc
j )

λcsi


+ max(0,xc

j )(1− yC) ∀j = 1, . . . , 6 (19c)

xcj1j2 =

64∑
i=1

λcsi
(
X ij1X

i
j2

)
∀(j1, j2) ∈ P (19d)

1−
∑

(i,j)∈C

(1− zij) 6 yC 6
1

|C|
∑

(i,j)∈C

zij (19e)

yC ∈ {0, 1} (19f)

where λcsi is an auxiliary variable. P = {(1,2), (1,3), (1,5),
(1,6), (2,3), (2,4), (2,6), (3,4), (3,5), (4,5), (4,6), (5,6)}. X can
be viewed as a matrix of size 26 × 6, such that every row
represents all possible combinations of the lower and upper
bounds of variables xcj ∈ [xc

j ,x
c
j ] ∀j = 1, . . . , 6. Constraints

(19a) set bounds for auxiliary multiplier variables. When yC =
1, constraints (19b), (19c), and (19d) represent the convex
hull consisting of variables xcj (∀j) and xcj1j2 (∀(j1, j2));
when yC = 0 constraints (19b) and (19c) become redundant.
Constraint (19e) connects yC and zij : when all lines are
switched on, (19e) fixes yC to 1. If any line is switched off,
1−
∑

(i,j)∈C(1−zij) 6 0 and 1
|C|
∑

(i,j)∈C zij ∈ [0, 1), which
enforce yC = 0. Also note that when yC = 0, (19a) and (19d)
ensure xc12 = xc45 = 0, and constraint (18) becomes redundant.
We can similarly derive the convex hull formulation for 3-cycle
constraints in the w space and for 4-cycle constraints.

C. Branch-and-Cut Algorithm for Cycle Constraints

To speed up the implementation, we develop a branch-and-
cut framework for lifted cycle constraints. More specifically,
we use the Benders decomposition, where we first solve the
ACOTS-QC model without any lifted cycle constraints, and
obtain optimal solutions for c-s and w variables. Then for
each cycle we solve a feasibility problem consisting of all
the lifted cycle constraints (within the c-s or w space) in
the extreme-point formulation without line switching decisions
(i.e., constraints (18), (19)), while fixing c-s or w variables to

their optimal values and yC to 1. If this problem is feasible,
then none of the linearized lifted cycle constraints are violated,
so we do not need to add any cut; otherwise, we generate a
Benders feasibility cut, and add this cut back to the ACOTS-
QC model and solve it again. More precisely, the cut added
is β>xc ≤ b, where β is an extreme ray of the feasibility
problem and xc is as defined in section IV-B. Finally, the
algorithm terminates when the ACOTS-QC model’s solution
is feasible to the lifted cycle constraints for all cycles. The
efficacy of this algorithm is shown in Section VI-A.

V. OPTIMIZATION-BASED BOUND TIGHTENING

The OBBT method is a technique in non-convex optimiza-
tion, which aims to improve the convex relaxation bound by
tightening the bounds of certain variables. OBBT is often used
to improve bounds in AC power flow problems [27], and it has
the benefit of being massively parallelizable [28]. In our work,
we implement OBBT to tighten the bounds of vi, θij , zij , and
yC variables before solving the relaxations of ACOTS.

To formulate bound tightening optimization models for any
variable x, we replace the objective of an ACOTS relaxation
(e.g., ACOTS-QC) with maxx or minx. To avoid solving
time-consuming MINLPs in OBBT, we linearly relax all
integer variables. We denote the optimal objectives of the
bound tightening maximization and minimization problems x̄
and x. If x is a binary variable (such as zij and yC), we can
further tighten their bounds by fixing x to 1 if x > 0, and to
0 if x̄ < 1 within the OBBT iteration. The OBBT algorithm
terminates when the bounds of all variables stop improving,
or when the algorithm reaches its time/iteration limit.

VI. NUMERICAL EXPERIMENTS

This section presents the numerical efficacy of proposed
ACOTS-QC and ACOPF-QC relaxations with lifted cycle con-
straints, and an analysis for ACOTS with different load pro-
files. Our experiments are conducted on PGLib-OPF v20.07
benchmark library [29]. We use a Linux workstation with
3.6GHz Intel Core i9-9900K CPUs and 128GB memory. The
programming language is Julia v1.6. We locally solve all non-
convex MINLP (ACOTS) and NLP (ACOPF) formulations
using Juniper.jl (v0.7.0) [30] and Ipopt (v3.13.4) [31], respec-
tively. All relaxation formulations (ACOTS-QC, ACOPF-QC
and OBBT iterations) are solved using the Gurobi (v9.0.0)
solver. The branch-and-cut framework for cycle constraints is
implemented using Gurobi’s lazy-constraint callback.

A. Relaxations for ACOTS

We compare five different types of relaxations for ACOTS:
(1) ‘PM’: The on/off QC relaxation implemented in Power-

Models.jl [19], which is used as state-of-the-art to benchmark
ACOTS relaxations. Formulation within ‘PM’ is based on
[14] which uses on/off trigonometric function relaxations and
recursive McCormick linearization of trilinear terms, without
additional cycle constraints or the OBBT algorithm.

(2) ‘E’: Proposed ACOTS-QC relaxation with extreme-point
representation for linearizing zijvivjcij and zijvivjsij in (3).

(3) ‘EC’: Tightened ‘E’ with lifted cycle constraints.
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(4) ‘ECB’: Includes all proposed improvements (extreme-
point representation, lifted cycle constraints, and OBBT).

(5) ‘ECB*’: The same as ‘ECB’, except the lifted cycle
constraints are added via branch-and-cut as in section IV-C.

We also provide initial feasible solutions as warm-start
solutions, which are helpful to speedup the convergence for
many of the large instances. Those initial feasible solutions
are obtained by solving ACOPF-QC relaxation with recursive
McCormick linearization for trilinear terms (for PM), ACOPF-
QC (with extreme-point linearization, for “E”) or ACOPF-QC
with lifted cycle constraints (for “EC”), and those solutions
are valid when all lines in the network are switched on.

We run PGLib instances with up to 300 buses under typical
operating conditions (TYP), as well as cases with small
angle-difference conditions (SAD) and congested operating
conditions (API). In Table I we present results for cases that
are solved in the 2-hour time limit (within 0.1% optimality
tolerance) for “E”. The performance measures we use for
comparison include optimality gap and runtime. We put “ns.”
for the optimality gaps of cases that are not solved to 0.1%
optimality tolerance within the time limit, and “tl.” for the
runtime of test cases that hit the time limit.

The optimality gap is calculated by (UB - LB)/LB*100
where LB is the optimal value from relaxations of ACOTS,
and UB is an upper bound for ACOTS. For UB, we take the
minimum of local optimal values of the following three types
of upper bounding models:
• Non-convex ACOTS model (1). Here, note that within the

time limit (2 hours), Juniper fails to find feasible solutions
for many instances.

• Non-convex ACOPF model with all lines switched on.
• Non-convex ACOPF model with the set of lines switched

off, as indicated by the ACOTS-QC solutions.
We highlight with boldface the optimality gaps improved after
the relaxations are tightened. All comparisons are between two
adjacent columns in the table. We also highlight the reduced
runtimes of our branch-and-cut algorithm (in ECB*).

The runtimes of “ECB”, and “ECB*” are the runtimes of
the ACOTS-QC relaxation problems and do not include the
runtimes of OBBT. This is because OBBT time is a constant
factor inclusion irrespective of whether the cycle constraints
are added to LP-relaxed models (zij , yC ∈ [0, 1]), directly
or in a branch-and-cut fashion within the OBBT algorithm.
Moreover, these times are not as significant when compared
with the ACOTS-QC relaxation problems, as the OBBT’s LP-
relaxed models, at every iteration, can be solved in parallel.
We also exclude the model building time of sub-problems in
ECB* within the branch-and-cut algorithm, as any overhead in
such time is an artifact of the mathematical modeling package
within Julia. In addition, we set the upper bound on the number
of added cuts at 200, as adding too many cuts could slow down
the performance. We observe that those added cuts are able to
significantly improve the bounds as shown in Table I.

In Table I, compared with “PM”, our tightened “E” reduces
the optimality gap for many benchmark instances, especially
for the SAD and API ones. For example, it yields 3.4%
gap improvement for case3 lmbd api and 2.9% improvement
for case24 ieee rts sad. It also solves several instances to

optimality that “PM” is not able to solve within the time
limit. The benefit of the lifted cycle constraints (“EC”) is most
apparent for “SAD” , with case14 ieee sad closing 6.2% and
case89 pegase sad finding the global optimal solution.

Combining the extreme point formulation, OBBT algorithm,
and the lifted cycle constraints, we obtain the tightest ACOTS
relaxation in the literature, as highlighted in the optimality
gap columns of “ECB” and “ECB*” (see Table I). Note that
“ECB*” is as tight as “ECB” in almost all cases, and reduces
the solution time significantly in many instances due to the
efficient implementation of the branch-and-cut framework. It
is clear from the table that the OBBT algorithm in con-
junction with all the proposed enhancements in this paper
can provide significant improvements in closing the gap for
several benchmark cases. For example, in case14 ieee sad,
“ECB” closes as much as 17.6% of the gap when compared
with “E”, and proves global optimality for case3 lmbd api.
With “ECB” and the faster “ECB*”, we close the optimality
gaps to lesser than 1.0% for ≈75% of all instances; these
improvements are also significant when compared with state-
of-the-art implementation in “PM” and the results in [15].

Although not shown in the result table, it is worthy to
mention that tightening the ACOTS relaxations does lead to
different line switching decisions. Therefore, by tightening
the relaxation, we make better decisions and obtain better
approximations of the true cost after line switching.

B. Analysis for varying load profiles

0

1

2

0 2 4 6 8 10 12 14 16

# 
of

f l
in

es
 

Load Change (%)

Fig. 2: Number of lines switched off with different load levels.

We uniformly increase the loading condition, starting from
the nominal value, of case30 ieee instance, and observe the
number of lines that are switched off. As shown in Figure 2,
the number of off lines first decreases, and then increases. This
is because when the load is at the lower levels, some lines are
redundant and are switched off to save costs. However, when
the load is very high and the network is congested, lines are
switched off to avoid congestion. As suggested in [5], it would
be beneficial to solve the ACOTS problem frequently to obtain
optimal line switching decisions for different load profiles.

C. Lifted cycle constraints for ACOPF-QC

We also add the linearized lifted cycle constraints (including
the novel ones we derived) to the ACOPF-QC relaxation, This
happens to be the special case of the ACOTS-QC with all
the lines of the network swithced on. These cycle constraints
are linearized using the strong extreme-point representation,
which is also new. We experiment with “TYP”, “SAD” and
“API” cases with up to 2869 buses (102 cases in total), and
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TABLE I: OPTIMALITY GAP AND RUNTIME OF ACOTS RELAXATIONS (BOLD NUMBERS: IMPROVED GAPS AND RUN TIMES AFTER
TIGHTENING THE RELAXATION; ‘ns.”: NOT SOLVED TO OPTIMALITY TOLERANCE WITHIN TIME LIMIT; “tl.”: HITS THE TIME LIMIT)

Optimality Gap (%) Runtime (seconds)
Test Case UB PM E EC ECB ECB* PM E EC ECB ECB*

Typical Operaing Conditions (TYP)
case3 lmbd 5812.6 1.3 1.0 1.0 0.0 0.1 0.02 0.04 0.19 0.15 0.39
case5 pjm 15174.0 1.1 1.1 1.1 1.1 1.1 0.12 0.04 0.23 0.31 0.43

case14 ieee 2178.1 0.1 0.1 0.1 0.1 0.1 0.44 0.28 1.49 2.50 1.32
case24 ieee rts 63352.2 0.0 0.0 0.0 0.0 0.0 4.28 1.11 310.56 349.21 3.37

case30 as 803.1 0.1 0.1 0.1 0.1 0.1 6.21 21.97 446.96 630.60 9.97
case30 ieee 7579.0 12.1 11.9 11.9 11.0 11.0 1.21 1.01 3.30 6.56 4.79
case39 epri 137728.7 0.0 0.0 0.0 0.0 0.0 0.65 0.52 0.93 1.17 2.32
case57 ieee 37559.3 0.1 0.1 0.1 0.1 0.1 34.34 17.51 40.27 77.43 27.96

case73 ieee rts 189764.1 0.0 0.0 0.0 0.0 0.0 39.58 33.14 4876.16 5136.27 34.48
case89 pegase 106622.2 0.1 0.1 0.0 ns. ns. tl. tl. tl. tl. tl.

case118 ieee 96645.9 0.3 0.3 0.3 0.3 0.3 497.58 415.09 1622.20 1778.12 1389.84
case179 goc 754266.4 0.2 0.2 0.2 0.2 0.2 1095.93 307.07 175.25 334.33 340.78

case200 activ 27557.6 0.0 0.0 0.0 0.0 ns. 1636.15 2837.87 4398.64 3014.30 tl.
Small Angle Difference Conditions (SAD)

case3 lmbd sad 5959.3 3.0 1.4 1.3 0.1 0.1 0.02 0.02 0.07 0.15 0.38
case5 pjm sad 26108.8 1.4 0.6 0.6 0.2 0.2 0.04 0.05 0.15 0.20 0.41

case14 ieee sad 2727.5 20.1 18.3 12.1 0.7 0.8 0.41 0.57 2.55 3.23 1.15
case24 ieee rts sad 75794.0 5.3 2.4 2.1 0.7 0.8 32.92 14.37 84.41 104.09 16.97

case30 as sad 893.9 4.5 1.9 1.9 1.1 1.2 18.56 11.68 45.37 65.27 14.28
case30 ieee sad 8188.6 8.8 8.7 8.7 0.1 0.2 1.50 2.82 5.62 5.89 2.77
case39 epri sad 147472.8 0.1 0.1 0.1 0.1 0.1 11.84 15.59 14.39 16.40 9.68
case57 ieee sad 38597.8 0.2 0.2 0.1 0.1 0.1 24.21 44.55 148.33 189.35 82.79

case89 pegase sad 107285.7 ns. 0.7 0.0 ns. ns. tl. tl. tl. tl. tl.
case118 ieee sad 97572.5 0.9 0.9 0.9 0.9 0.9 4581.28 3453.41 6818.73 tl. 4520.33
case179 goc sad 755293.1 ns. 0.1 0.1 0.1 0.1 tl. tl. tl. tl. tl.

case200 activ sad 27557.6 0.0 0.0 0.0 0.0 ns. 3564.09 tl. 1671.87 tl. tl.
Congested Operating Conditions (API)

case3 lmbd api 10636.0 3.8 0.4 0.4 0.0 0.0 0.02 0.03 0.13 0.09 0.33
case5 pjm api 75190.3 2.6 2.6 2.6 0.3 0.3 0.11 0.07 0.19 0.30 0.55

case14 ieee api 5999.4 5.1 5.1 5.1 0.8 0.9 0.34 0.27 1.24 0.82 0.84
case24 ieee rts api 119743.1 5.2 3.4 3.4 1.2 1.2 7.30 4.16 82.80 31.66 6.50

case30 as api 3065.8 9.7 9.7 9.7 9.4 9.5 3.65 3.44 37.99 20.32 6.00
case30 ieee api 17936.5 4.9 4.9 4.9 0.3 0.4 1.25 0.86 2.22 4.57 2.22
case39 epri api 246723.0 0.5 0.5 0.5 0.4 0.4 1.42 0.75 1.86 4.84 3.77
case57 ieee api 49271.9 0.0 0.1 0.1 0.0 0.0 36.50 12.63 44.12 51.50 27.34

case73 ieee rts api 385277.3 4.3 2.4 1.7 1.2 1.2 128.08 3869.93 tl. 3307.26 328.03
case89 pegase api 100325.3 ns. 0.2 0.0 ns. ns. tl. tl. tl. tl. tl.

case118 ieee api 181535.8 6.5 6.2 6.2 6.1 6.1 tl. tl. tl. tl. tl.
case162 ieee dtc api 116923.8 1.0 1.0 1.0 0.3 ns. tl. tl. tl. tl. tl.

case179 goc api 1932043.6 6.3 5.9 5.8 0.6 0.6 tl. 881.61 tl. 343.73 1000.46
case200 activ api 35701.3 0.0 0.0 0.0 0.0 0.0 1993.90 2764.12 tl. 3029.17 855.60
case240 pserc api 4639006.1 ns. 0.6 0.6 0.6 0.6 tl. tl. tl. tl. tl.
case300 ieee api 684985.5 0.8 0.8 0.8 0.7 0.8 tl. tl. tl. tl. tl.

TABLE II: COMPARING OPTIMALITY GAPS (%) FOR “E” AND
“EC” RELAXATIONS FOR ACOPF-QC.

Test Case E EC
case3 lmbd sad 1.38 1.31
case14 ieee sad 19.16 13.10

case24 ieee rts sad 2.74 2.20
case57 ieee sad 0.32 0.25

case73 ieee rts sad 2.37 1.80
case240 pserc sad 4.34 4.24
case2383wp k sad 1.91 1.88

case3 lmbd api 4.53 3.85
case24 ieee rts api 11.02 10.88
case73 ieee rts api 9.52 9.31

case179 goc api 5.86 5.75

observe improvements of optimality gaps in several instances.
We report cases with greater than 0.03% improvement in
objectives in Table II. The results show that, for ACOPF-
QC the lifted cycle constraints are more useful in tightening

“SAD” and “API” instances, and for smaller-size test cases.

VII. CONCLUSION

In this paper, we strengthen the on/off QC relaxation of
the ACOTS model by the extreme-point representation tech-
nique, several valid inequalities added via branch-and-cut, and
the OBBT algorithm. Experiments on PGLib instances show
that the strengthened ACOTS-QC formulation significantly
improves lower bounds in several instances, especially for
small angle-difference instances and congested instances. Our
proposed lifted cycle constraints improve bounds of ACOTS-
QC as well as ACOPF-QC relaxations.

Considering large-scale grids, operated in a close-to-real-
time fashion, ACOTS is still a very hard problem to solve with
optimality guarantees. As the line switching decisions are sen-
sitive to load changes, it would be helpful to develop stochastic
programming models that provide more robust solutions. To
address scaling issues, it would be useful to (i) balance the
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trade-off between run time and tighter formulations and (ii)
develop faster decomposition-based distributed algorithms.

APPENDIX

A. Proof of Theorem III.1
First, we prove that conv(H0∪H1) ⊆ H . For any η0 ∈ H0,

η0 satisfies constraints in (7) when zij = 0. Similarly, for any
η1 ∈ H1, η1 satisfies constraints in (7) when zij = 1. Thus,
H0 ∪H1 ⊆ H . Since H contains only linear constraints and
is thus convex, we have conv(H0 ∪H1) ⊆ H .

Next, we prove that H ⊆ conv(H0 ∪H1). Let η∗ ∈ H . If
z∗ij = 0, then η∗ ∈ H0, and if z∗ij = 1, then η∗ ∈ H1. When
z∗ij ∈ (0, 1), we define the following variables:

η∗0 =

(
0, 0, · · · , 0,

v∗i −
∑8

k=1 λ
c∗
ij,kξ

k
1

1− z∗ij
,
v∗j −

∑8
k=1 λ

c∗
ij,kξ

k
2

1− z∗ij

)

η∗1 =

(
wR∗

ij

z∗ij
,
wI∗

ij

z∗ij
,
c∗ij
z∗ij

,
s∗ij
z∗ij

,
λc∗
ij,1

z∗ij
, · · · ,

λc∗
ij,8

z∗ij
,
λs∗
ij,1

z∗ij
, · · · ,

λs∗
ij,8

z∗ij
,

1,

8∑
k=1

λc∗
ij,k

z∗ij
ξk
1 ,

8∑
k=1

λc∗
ij,k

z∗ij
ξk
2

)
Next, we prove that η∗0 ∈ H0 and η∗1 ∈ H1. Because of (7b),

we have (1−z∗ij)vi 6 v∗j −
∑8
k=1 λ

c∗
ij,kξ

k
2 6 (1−z∗ij)vi. Thus,

v∗i−
∑8

k=1 λ
c∗
ij,kξ

k

1

1−z∗ij
∈ [vi,vi]. Similarly,

v∗j−
∑8

k=1 λ
c∗
ij,kξ

k

2

1−z∗ij
∈

[vj ,vj ]. Therefore, η∗0 ∈ H0.

For η∗1 ,
wR∗

ij

z∗ij
=
∑8
k=1

λc∗
ij,1

z∗ij
(ξk1 , ξ

k
2 , ξ

k
3) because wR∗ij =∑8

k=1 λ
c∗
ij,1(ξk1 , ξ

k
2 , ξ

k
3) and z∗ij ∈ (0, 1). Similarly, it can

be proved that η∗1 satisfies constraints (7a), (7f), (7h), and
(8c). For constraint (8a), the first equation follows directly
from the definition of η∗1 , and the second equality is correct
because the validity of (7b) and (7c) for η∗ indicates that∑8
k=1 λ

s∗
ij,kγ

k
1 +(1−z∗ij)vi 6

∑8
k=1 λ

c∗
ij,kξ

k
1 +(1−z∗ij)vi and∑8

k=1 λ
s∗
ij,kγ

k
1 + (1 − z∗ij)vi ≥

∑8
k=1 λ

c∗
ij,kξ

k
1 + (1 − z∗ij)vi,

thus
∑8
k=1 λ

c∗
ij,kξ

k
1 =

∑8
k=1 λ

s∗
ij,kγ

k
1 ⇒

∑8
k=1

λc∗
ij,k

z∗ij
ξk1 =∑8

k=1

λs∗
ij,k

z∗ij
γk1 , which means η∗1 satisfies the second equality

in (8a). With similar arguments, η∗1 is also feasible for (8b).
Therefore, η∗1 ∈ H1.

Now note that η∗ = (1 − z∗ij)η
∗
0 + z∗ijη

∗
1 , which means

H ⊆ conv(H0 ∪H1).
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