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Abstract

We introduce various extensions of Campbell’s Theorem that hold for an arbitrary
nonhomogeneous Batch Markovian Arrival Process. Both the Laplace functional, and
various moments associated with such Batch Markovian Arrival Processes are analyzed
in detail. Applications of these ideas to the study of infinite-server queues are also
discussed.
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1 Introduction

The main objective of this study is to show how Campbell’s Theorem, an important result
from the theory of Poisson processes, can be extended to the more general class of non-
homogeneous Batch Markovian Arrival Processes (BMAPs). After we state and prove our
extensions, we will then explain how these ideas relate to the study of infinite-server queues
fed by nonhomogeneous BMAPs.

Readers should recall that a point process {N(t); t ≥ 0} on [0,∞) has associated with it
a nondecreasing sequence of random variables {Tn}n≥1 that satisfy the following properties:
for each t ≥ 0,

N(t) =
∞∑
n=1

1{Tn≤t}

where 1{·} is an indicator function, equal to 1 if (·) is true, and 0 if (·) is false. Furthermore,
for each integer n ≥ 1,

Tn = inf{t ≥ 0 : N(t) ≥ n}.

These two relationships tell us there is a one-to-one correspondence between the points
{Tn}n≥1 and the sample path {N(t); t ≥ 0}.

The Laplace functional of a point process N is a functional LN : C+
K → R, where C+

K is
the set of all nonnegative, continuous functions defined on [0,∞), that vanish outside of a
compact set and map to the real line. In particular,

LN (g) := E[e−
∫
[0,∞) g(s)N(ds)

], g ∈ C+
K
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where the integral appearing in the definition of LN is interpreted as a Lebesgue-Stieltjes
integral. Moreover, ∫

[0,∞)
g(s)N(ds) =

∞∑
n=1

g(Tn).

The Laplace functional is a useful object because two point processes are equal in distribu-
tion if and only if their Laplace functionals are equal. It is possible to study the Laplace
functional when its domain is larger than C+

K , but the finite-dimensional distributions of N
are completely determined by its Laplace functional when the functional is only defined on
C+
K . Furthermore, in many of our derivations, this assumption will allow us to avoid having

to make statements that are only true ‘almost-surely’ with respect to Lebesgue measure.
Instead of studying the Laplace functional directly, we will instead study the related

quantities

LN (g, t) := E[e−
∫
[0,t] g(s)N(ds)

], g ∈ C+
K , t ≥ 0.

Clearly, for each g ∈ C+
K , the dominated convergence theorem yields

LN (g) = lim
t→∞

LN (g, t)

and in fact, there exists a real number t0 ≥ 0 (depending on g) such that LN (g, t) = LN (g)
for each t ≥ t0.

It is well-known that LN (g, t) admits a simple form when N is a nonhomogeneous
Poisson process, having rate function λ : [0,∞) → [0,∞): we assume for convenience that
λ is continuous on [0,∞), but this assumption can be relaxed in various ways. Associated
with λ is the mean measure Λ defined on B([0,∞)), the Borel sets of [0,∞), where for each
A ∈ B([0,∞)),

Λ(A) :=

∫
A
λ(s)ds.

The following statement addresses a version of Campbell’s Theorem for nonhomogeneous
Poisson processes on [0,∞).

Theorem 1.1. (Campbell’s Theorem) For each real t ≥ 0, and each g ∈ C+
K , we have

E[e−
∫
[0,t] g(s)N(ds)

] = e−
∫ t
0 (1−e−g(s))λ(s)ds. (1)

Moreover,

E

[∫
[0,t]

g(s)N(ds)

]
=

∫ t

0
g(s)λ(s)ds (2)

and

V ar

(∫
[0,t]

g(s)N(ds)

)
=

∫ t

0
g(s)2λ(s)ds. (3)
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Equation (1) can be established through conditioning on N(t), then interpreting the
point locations in [0, t] as order statistics of i.i.d. random variables: see e.g. Chapter 3 of
Serfozo [8]. Likewise, as is done in [8], replacing g with αg, where α ∈ [0,∞), yields the
Laplace transform of the random variable∫

[0,t]
g(s)N(ds)

from which both (2) and (3) can be established through differentiation with respect to α.
Our objective is to show how a combination of the Campbell-Mecke formula and the

Silvnyak-Mecke Theorem from the theory of Palm distributions (see e.g. Baccelli et al. [1]
or Kallenberg [4]) can be used to establish a version of Campbell’s Theorem for nonhomoge-
neous BMAPs. This type of result, to the best of the author’s knowledge, has not yet been
observed even for homogeneous MAPs, although the moment recursions we derive are very
similar to the moment recursions derived in Nielsen et al. [6], where the authors focus on
studying moments of the counting process N(t) associated with the BMAP. Closely related
ideas were used recently in previous work of the author [3] which focused on an analysis
of a class of stochastic gene expression models: in fact, it could be argued that this paper
was inspired by [3]. Once we establish a version of Campbell’s theorem for a nonhomoge-
neous BMAP, we will then examine how these ideas can be used to study the joint Laplace
functional of a finite number of thinned nonhomogenous MAPs, all thinned from a single
underlying MAP.

A second objective of this paper is to show what happens when related ideas are used
to study an infinite-server queue fed by a nonhomogeneous BMAP. The point process ar-
guments we use to study one set of random variables associated with this queue can be
argued to be somewhat analogous to the type of argument used to derive the Kolmogorov
backward equations of a countable-state continuous-time Markov chain (CTMC), while the
arguments we use to study a different, yet related set of random variables are analogous to
the type of argument used to derive the Kolmogorov forward equations of a CTMC. The
arguments we use to establish Campbell’s Theorem for a BMAP are analogous to the type of
argument used to establish the Kolmogorov forward equations of a countable-state CTMC,
and given the framework of Campbell’s theorem, it turns out that the forward approach is
the most useful approach. This should be clearer to readers once our Campbell-like results
are compared to the results we derive for infinite-server queues fed by a nonhomogeneous
BMAP.

We close the introduction by mentioning that all random elements discussed in this
study are assumed to exist on a probability space (Ω,A,P), where A is the Borel σ-field
generated by the complete, separable metric space (Ω, d) having metric d. While this may at
first sound like a major restriction, all random elements we will encounter can be constructed
on such a space, and we need the underlying probability space to have this structure in order
to guarantee various Palm measures we use both exist, and are unique in some sense. These
issues will not play a major role in our study in any way, but we refer readers interested in
seeing these details to Chapters 10 and 11 of Kallenberg [4].
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2 Extending Campbell’s Theorem to Nonhomogeneous Batch
Markovian Arrival Processes

A nonhomogeneous BMAP is governed by a continuous-time Markov chain {X(t); t ≥ 0}
having state space S = N × E, where N denotes the set of all nonnegative integers, and
E := {1, 2, . . . ,m} for some integer m ≥ 1. It helps to write S as

S :=
∞⋃
n=0

Ln

where for each n ∈ N,

Ln := {(n, 1), (n, 2), . . . , (n,m)}

represents level n. We can express X(t) as X(t) = (N(t), I(t)), where N(t) denotes the
level visited by the chain at time t, and I(t) the phase of the chain at time t. The process
{N(t); t ≥ 0} is the main object of interest in our study, and we refer to it as the counting
process of the BMAP.

The CTMC {X(t); t ≥ 0} has associated with it a family of transition matrices {Q(t); t ≥
0}, where for each t ≥ 0, the rows and columns of Q(t) are arranged based on a natural
lexicographical ordering of the states in S: given two states (n1, i1), (n2, i2) ∈ S, we say
(n1, i1) < (n2, i2) if either (a) n1 < n2, or (b) n1 = n2 and i1 < i2. Using this ordering
scheme, each transition matrix Q(t) is of the form

Q(t) =



K0(t) K1(t) K2(t) K3(t) K4(t) . . .
0 K0(t) K1(t) K2(t) K3(t) . . .
0 0 K0(t) K1(t) K2(t) . . .

0 0 0 K0(t) K1(t)
. . .

0 0 0 0 K0(t)
. . .

...
...

...
. . .

. . .
. . .


.

For each t ≥ 0, the matrices Kℓ(t), ℓ ≥ 0 are elements of Rm×m, and 0 ∈ Rm×m denotes
the zero matrix. Each matrix Kℓ(t), for ℓ ≥ 1 is a m × m matrix whose elements are all
nonnegative, and K0(t) is a matrix whose off-diagonal elements are all nonnegative, and its
diagonal elements are nonpositive, and defined in a manner so that each row sum of Q(t)
is equal to zero. More particularly, for each integer ℓ ≥ 0,

Kℓ(t) = [kℓ;z,w(t)]z,w∈S

where for each z ∈ E,

k0;z,z(t) = −
∑
w ̸=z

k0;z,w(t)−
∑
ℓ≥1

∑
w∈E

kℓ;z,w(t).

We assume each function kℓ;z,w : [0,∞) → [0,∞) is continuous on [0,∞).
The proof techniques we use throughout will involve making use of how {X(t); t ≥ 0}

can be constructed with a countable collection of nonhomogeneous Poisson processes. For
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each z, w ∈ E satisfying z ̸= w, let A
(0)
z,w represent a nonhomogeneous Poisson process on

[0,∞) having rate function k0;z,w, and for each integer ℓ ≥ 1, and each z, w ∈ S (where

possibly z = w), let A
(ℓ)
z,w represent a nonhomogeneous Poisson process on [0,∞) having

rate parameter kℓ;z,w. We assume throughout that the aforementioned nonhomogeneous
Poisson processes are independent. Finally, for each phase y ∈ S, we define the Poisson

process A
(0)
y as

A(0)
y :=

∑
z ̸=y

A(0)
y,z +

∞∑
ℓ=1

∑
z

A(ℓ)
y,z.

Together these Poisson processes can be used to construct a sample path of {X(t); t ≥ 0}
in a way that is best illustrated through the following equality: for each state y ∈ E, and
each integer n ≥ 0,

1{X(t)=(n+1,y)} =
n+1∑
ℓ=1

∑
z∈S

∫
[0,t]

1{X(s−)=(n+1−ℓ,z)}1{A(0)
y (s,t]=0}A

(ℓ)
z,y(ds)

+
∑

z∈S:z ̸=y

∫
[0,t]

1{X(s−)=(n+1,z)}1{A(0)
y (s,t]=0}A

(0)
z,y(ds)

and if X(0) = (0, y0),

1{X(t)=(0,y)} = 1{y=y0}1{A(0)
y (0,t]=0}

+
∑

z∈S,z ̸=y

∫
[0,t]

1{X(s−)=(0,z)}1{A(0)
y (s,t]=0}A

(0)
z,y(ds).

Readers wishing to see a more rigorous construction of {X(t); t ≥ 0} from these Poisson
processes (for the homogeneous case), including a proof showing {X(t); t ≥ 0} is a CTMC
under this construction, are referred to Chapter 9 of Brémaud [2].

2.1 Campbell’s Theorem for a Nonhomogeneous BMAP

For each t ∈ [0,∞) and each g ∈ C+
K , we define the matrix L(t, g) as

L(t, g) :=
[
Ex

[
e
−

∫
[0,t] g(s)N(ds)

1{I(t)=y}

]]
x,y∈E

.

Throughout, we let Px denote a conditional probability, where we condition on I(0) = x,
and we let Ex denote the conditional expectation associated with Px.

Our first result is a natural BMAP extension of Campbell’s Theorem.

Theorem 2.1. The matrices L(t, g), for t ≥ 0 and g ∈ C+
K , satisfy the following ordinary

differential equation: for each t > 0,

∂

∂t
L(t, g) = L(t, g)

∞∑
ℓ=0

Kℓ(t)e
−ℓg(t)

where L(0, g) = I.
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Proof. Fix an arbitrarily chosen state x ∈ E, and set X(0) = (0, x). Observe that for each
y ∈ S, where possibly y = x,

e
−

∫
[0,t] g(s)N(ds)

1{I(t)=y}

= 1{x=y}1{A(0)
y (0,t]=0} (4)

+
∑
z ̸=y

∫
(0,t]

e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}1{A(0)
y (s,t]=0}A

(0)
z,y(ds)

+
∑
ℓ≥1

∑
z

∫
(0,t]

e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}e
−ℓg(s)1{A(0)

y (s,t]=0}A
(ℓ)
z,y(ds).

Taking the expected value of both sides, while applying the Campbell-Mecke formula re-
peatedly to the right-hand-side of (4) yields

Ex[e
−

∫
[0,t] g(s)N(ds)

1{I(t)=y}]

= 1{x=y}e
∫ t
0 k0;y,y(s)ds (5)

+
∑
z ̸=y

∫ t

0
E(0;z,y)
x,s

[
e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}1{A(0)
y (s,t]=0}

]
k0;z,y(s)ds

+
∑
ℓ≥1

∑
z

∫ t

0
E(ℓ;z,y)
x,s

[
e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}e
−ℓg(s)1{A(0)

y (s,t]=0}

]
kℓ;z,y(s)ds

where {P(ℓ;z,y)
x,s }s≥0 is the collection of Palm measures induced by the Poisson process A

(ℓ)
z,y.

Next, recall that by the Silvnyak-Mecke theorem, the law of P(ℓ;z,y)
x,s on A is the same as the

law of Px on A, except A
(ℓ)
z,y has a point at location s with probability one. Thus,

E(ℓ;z,y)
x,s

[
e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}1{A(0)
y (s,t]=0}

]
= Ex

[
e
−

∫
[0,s) g(u)N(du)

1{I(s−)=z}

]
Ey

[
1{A(0)

y (s,t]=0}

]
= Ex

[
e
−

∫
[0,s] g(u)N(du)

1{I(s)=z}

]
e
∫ t
s k0;y,y(u)du.

Plugging these observations into (5) then gives

Ex[e
−

∫
[0,t] g(s)N(ds)

1{I(t)=y}]

= 1{x=y}e
∫ t
0 k0;y,y(u)du (6)

+
∑
z ̸=y

∫ t

0
Ex[e

−
∫
[0,s] g(u)N(du)

1{I(s)=z}]k0;z,y(s)e
∫ t
s k0;y,y(u)duds

+
∑
ℓ≥1

∑
z

∫ t

0
Ex[e

−
∫
[0,s] g(u)N(du)

1{I(s)=z}]e
−ℓg(s)kℓ;z,y(s)e

∫ t
s k0;y,y(u)duds.

After multiplying both sides of (6) by exp{−
∫ t
0 k0;y,y(u)du}, taking derivatives with respect

to t, and re-expressing the resulting equations in matrix form, we get

∂

∂t
L(t, g) = L(t, g)K0(t) + L(t, g)

∑
ℓ≥1

e−ℓg(t)Kℓ(t) = L(t, g)
∞∑
ℓ=0

e−ℓg(t)Kℓ(t)

proving the claim.
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We now study various moments associated with a MAP. Given a function g ∈ C+
K we

define, for each integer n ≥ 0 and each real number t ≥ 0, the matrix

Mn(g, t) :=

Ex

N(t)∑
ℓ=1

g(Tℓ)

n

1{I(t)=y}


x,y∈E

.

The next result shows that the matricesMn(g, t) satisfy a recursive system of linear ordinary
differential equations.

Theorem 2.2. Given an integer m ≥ 0, suppose that for each integer k ∈ {0, 1, 2, . . . ,m+
1}, the matrix function ∑

ℓ≥1

(ℓg(t))kKℓ(t)

is finite for each t ∈ [0,∞), and is continuous on [0,∞). Then for each n ∈ {0, 1, 2, . . . ,m},

∂

∂t
Mn+1(g, t) = Mn+1(g, t)

∑
ℓ≥0

Kℓ(t) +
n∑

k=0

(
n+ 1

k

)
Mk(g, t)

∑
ℓ≥1

(ℓg(t))n+1−kKℓ(t). (7)

Proof. Fix an arbitrary state x ∈ E. Then for each integer n ≥ 0, and each state y ∈ E
(where possibly y = x)(∫

[0,t]
g(u)N(du)

)n+1

1{I(t)=y}

=
∑
z ̸=y

∫
[0,t]

(∫
[0,s)

g(u)N(du)

)n+1

1{I(s−)=z}1{A(0)
y (s,t]=0}A

(0)
z,y(ds)

+
∑
ℓ≥1

∑
z

∫
[0,t]

(∫
[0,s)

g(u)N(du) + ℓg(s)

)n+1

1{I(s−)=z}1{A(0)
y (s,t]=0}A

(ℓ)
z,y(ds).

Taking the expected value of both sides, while applying the Campbell-Mecke formula and
the Silvnyak-Mecke theorem to the right hand side gives

Ex

(∫
[0,t]

g(u)N(du)

)n+1

1{I(t)=y}


=
∑
z ̸=y

∫
[0,t]

Ex

(∫
[0,s]

g(u)N(du)

)n+1

1{I(s)=z}

 k0;z,y(s)e
∫ t
s k0;y,y(u)duds

+
∑
ℓ≥1

∑
z

∫
[0,t]

Ex

(∫
[0,s]

g(u)N(du) + ℓg(s)

)n+1

1{I(s)=z}

 kℓ;z,y(s)e
∫ t
s k0;y,y(u)duds.

After multiplying both sides by e−
∫ t
0 k0;y,y(u)du, taking derivatives, and simplifying, we get

∂

∂t
Mn+1(g, t) = Mn+1(g, t)

∑
ℓ≥0

Kℓ(t) +
n∑

k=0

(
n+ 1

k

)
Mk(g, t)

∑
ℓ≥1

[
(ℓg(t))n+1−kKℓ(t)

]
proving the claim.
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It does not appear to be possible to simplify (7) further in general, but it can be simplified
when

∑
ℓ≥0Kℓ(t) is the same for all t ≥ 0. This condition is satisfied, for instance, when

all of the off-diagonal elements of K0(t) are constant with respect to t, and when, for each
integer ℓ ≥ 1, Kℓ(t) is a diagonal matrix for each t ≥ 0: such a nonhomogeneous BMAP can
be thought of as a batch Markov-modulated nonhomogeneous Poisson process, where the
arrival rate function varies in accordance to a time-homogeneous CTMC having transition
rate matrix

∑
ℓ≥0Kℓ(0).

Corollary 2.1. Suppose that for each t ≥ 0, the matrix K0(t) + K1(t) is invariant with
respect to t, and that the hypothesis of Theorem 2.2 is satisfied for some integer m ≥ 0.
Then

M1(g, t) =

∫ t

0
e(

∑
ℓ≥0 Kℓ(0))s

∑
ℓ≥1

(ℓg(s))Kℓ(s)

 e(
∑

ℓ≥0 Kℓ(0))(t−s)ds.

and for each integer 1 ≤ n ≤ m,

Mn+1(g, t) =
n∑

k=0

(
n+ 1

k

)∫ t

0
Mk(g, s)

∑
ℓ≥1

[
(ℓg(s))n+1−kKℓ(s)

]
e(

∑
ℓ≥0 Kℓ(0))(t−s)ds.

Proof. Starting from the equation

M
′
n+1(g, t)−Mn+1(g, t)

∑
ℓ≥0

Kℓ(0) =
n∑

k=0

(
n+ 1

k

)
Mk(g, t)

∑
ℓ≥1

(ℓg(t))n+1−kKℓ(t)

derived in Theorem 2.2, we observe that this linear matrix ODE is easy to solve: indeed,
for each t ≥ 0, we get that for each integer n ≥ 0

Mn+1(t) =

∫ t

0

n∑
k=0

(
n+ 1

k

)
Mk(g, s)g(s)

n+1−kK1(s)e
(
∑

ℓ≥0 Kℓ(0))(t−s)ds

which proves the claim, since in this case M0(g, s) = e(
∑

ℓ≥0 Kℓ(0))s.

As a final ‘sanity check’, we close this subsection by showing how Corollary 2.1 simplifies
when {N(t); t ≥ 0} is a nonhomogeneous Poisson process having rate function λ : [0,∞) →
[0,∞).

Corollary 2.2. For each real t ≥ 0, and each integer n ≥ 0,

E[N(t)n+1] =
n∑

k=0

(
n+ 1

k

)∫ t

0
E[N(s)k]g(s)n+1−kλ(s)ds.

From this result, we get

E[N(t)] =

∫ t

0
g(s)λ(s)ds
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which is clearly (2), and

E[N(t)2] =

∫ t

0
g(s)2λ(s)ds+ 2

∫ t

0
E[N(s)]g(s)λ(s)ds

=

∫ t

0
g(s)2λ(s)ds+ 2

∫ t

0

∫ s

0
g(u)λ(u)g(s)λ(s)ds

=

∫ t

0
g(s)2λ(s)ds+

(∫ t

0
g(s)λ(s)ds

)2

=

∫ t

0
g(s)2λ(s)ds+ E[N(t)]2

which implies

V ar(N(t)) =

∫ t

0
g(s)2λ(s)ds

proving (3).

2.2 A Thinning Result

The proof technique we use to establish Theorem 2.1 can be used to say something about
thinning properties of Markovian arrival processes. In order to refrain from further obscur-
ing the basic ideas, we consider only the thinning of a nonhomogeneous MAP instead of a
nonhomogeneous BMAP, meaning we assume Kℓ(t) = 0 for each integer ℓ ≥ 2.

Suppose we associate with each point of a Markovian arrival process a label, indepen-
dently of everything else. Letting Ln denote the label associated with the nth point Tn of
a MAP, we assume that for each k ∈ {1, 2, . . . , n},

P(Ln = k | Tn = s) = pk(s), s ≥ 0

where
∑n

k=1 pk(s) = 1 for each s ≥ 0. Given this time-dependent labeling scheme, we define
the point processes N1, N2, . . . , Nn as

Nk(A) :=

∫
A
1{L(s)=k}N(ds), A ∈ B([0,∞))

where L(s) denotes the label associated with the point located at time s. We assume each
function pk : [0,∞) → [0, 1] is continuous on its domain. We omit the proof, as it can be
derived using essentially the same argument as that used to establish Theorem 2.1.

Theorem 2.3. For each collection of functions g1, g2, . . . , gn ∈ C+
K , we have

∂

∂t
L(t, g) = L(t, g)

[
K0(t) +K1(t)

n∑
k=1

e−gk(t)pk(t)

]
, t > 0

where L(0, g) = I, α = (α1, α2, . . . , αn) and g = (g1, g2, . . . , gn).

We do not expect N1, N2, . . . , Nn to be independent in general, but this result can
be used to provide another proof of why these processes are independent when N is a
nonhomogeneous Poisson process having rate function λ.
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3 An Infinite-Server Queue Fed By a Nonhomogeneous BMAP

In this section, we study to what extent the ideas we used to state and prove a version of
Campbell’s Theorem for nonhomogeneous BMAPs can also be used to study an infinite-
server queue fed by a nonhomogeneous BMAP. To the best of the author’s knowledge,
this model has not yet been studied in the literature, and we will show in this section
that this model becomes much more difficult in various ways when the arrival process
is a nonhomogeneous BMAP instead of a homogeneous BMAP. The PH/G/∞ queue, a
special case of the homogeneous MAP/G/∞ queue where customers arrive in accordance
to a renewal process having phase-type interrenewals, was first analyzed in Ramaswami
and Neuts [7]. The homogeneous BMAP/G/∞ queue was first analyzed in Masuyama and
Takine [5].

Suppose that customers arrive to an infinite-server queueing system in accordance to the
inhomogeneous Batch Markovian Arrival Process (BMAP) described in Section 2. Assume
each customer brings a generally distributed amount of work with CDF F , independently
of everything else, and let F (t) := 1 − F (t) for each t ∈ R. We also assume F (0) = 0,
meaning each customer brings a positive amount of work with probability one. Finally, we
let Bj(u) denote the amount of work brought by the jth customer arriving at time u, and
we let {Bj}j≥1 denote a generic i.i.d. sequence of random variables, each having CDF F .

Our primary objective is to study the distribution of Q(t) and I(t), where Q(t) denotes
the number of customers present in the system at time t. Unfortunately, contrary to the case
where {N(t); t ≥ 0} is a homogeneous BMAP, this joint distribution cannot be described
with a single ODE, but we can still say something about this distribution using the following
trick. Fix a real number t > 0, and for each A ∈ B([0, t]) (the Borel subsets of [0, t]), define
Q(A, t) as the number of customers arriving in A that are still present in the system at time
t. Next, we define, for each s ∈ [0, t], the matrix

Lf,t(α, s) :=
[
Ex[e

−αQ((0,s],t)1{I(s)=y}]
]
.

Theorem 3.1. Fix a real number t > 0. For each α ∈ C+, we see that for almost every
s ∈ (0, t) with respect to Lebesgue measure,

∂

∂s
Lf,t(α, s) = Lf,t(α, s)

∞∑
ℓ=0

(1− (1− e−α)F (t− s))ℓKℓ(s).

Furthermore, Lf,t(α, 0) = I.

From an applications standpoint, this system of ODEs is less desirable, because usually
the goal is to study Lf,t(α, t) for each t > 0.

Proof. First observe that

e−αQ((0,s],t)1{I(s)=y}

= 1{x=y}1{A(0)
y (s)=0}

+
∑
z ̸=y

∫
(0,s]

e−αQ((0,u),t)1{I(u−)=z}1{A(0)
y (u,s]=0}A

(0)
z,y(du)

+

∞∑
ℓ=1

∑
z

∫
(0,s]

e−αQ((0,u),t)1{I(u−)=z}e
−α

∑ℓ
j=1 1{Bj(u)>t−u}1{A(0)

y (u,s]=0}A
(ℓ)
z,y(du).
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Taking the expected value of both sides, while applying the Campbell-Mecke formula to the
right hand side gives

Ex

[
e−αQ((0,s],t)1{I(s)=y}

]
= 1{x=y}e

∫ s
0 k0;y,y(u)du

+
∑
z ̸=y

∫ s

0
Ex

[
e−αQ((0,u],t)1{I(u)=z}

]
k0;z,y(u)e

∫ s
u k0;y,y(v)dvdu

+
∞∑
k=1

∑
z

∫ s

0
Ex

[
e−αQ((0,u],t)1{I(u)=z}

]
E[e−α

∑k
j=1 1(Bj>t−u)]kℓ;z,ye

∫ s
u k0;y,y(v)dvdu.

Multiplying both sides of the equality by e−
∫ s
0 k0;y,y(v)dv, we get after taking derivatives of

both sides with respect to s and simplifying that

∂

∂s
Lf,t(α, s) = Lf,t(α, s)K0(s) +

∞∑
ℓ=1

Lf,t(α, s)E[e−α
∑ℓ

j=1 1(Bj>t−s)]Kℓ(s)

which proves the claim.

We next derive a recursion for the moments of Q((0, s], t), for each s ∈ [0, t]. Fix t > 0,
and for each s ∈ [0, t], define

Mf,n(s) :=
[
Ex

[
Q((0, s], t)n1{I(s)=y}

]]
x,y∈E .

Theorem 3.2. Fix a real number t > 0, and assume there exists an integer m ≥ 0 such
that for each k ∈ {0, 1, 2, . . . ,m+ 1}, the function

∑
ℓ≥1

E


 ℓ∑

j=1

1{Bj>t−s}

k
Kℓ(s)

is finite for each s ∈ [0, t], and continuous almost-surely (with respect to Lebesgue measure)
on [0, t]. Then for almost every s ∈ (0, t) (with respect to Lebesgue measure), we have for
0 ≤ n ≤ m that

∂

∂s
Mf,n+1(s) = Mf,n+1(s)

∑
ℓ≥0

Kℓ(s) +

n∑
k=0

(
n+ 1

k

)
Mf,k(s)

∑
ℓ≥1

E


 ℓ∑

j=1

1{Bj>t−s}

n+1−k
Kℓ(s).

(8)

Proof. The proof is similar to the proof used to establish Theorem 2.2, except we start with
the following observation: for each integer n ≥ 0,

Q((0, s], t)n+11{I(s)=y}

=
∑
z ̸=y

∫
(0,s]

Q((0, u), t)n+11{I(u−)=z}1{A(0)
y (u,s]=0}A

(0)
z,y(du)

+
∑
ℓ≥1

∑
z

∫
(0,s]

Q((0, u), t) +

ℓ∑
j=1

1{Bj(u)>t−u}

n+1

1{I(u−)=z}1{A(0)
y (u,s]=0}A

(ℓ)
z,y(du).
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After taking the expectation of both sides, while applying both the Campbell-Mecke formula
and the Silvnyak-Mecke formula, and simplifying accordingly, we arrive at (8).

An analogous linear ODE can be derived for a different set of quantities. Fix a real
number t > 0, and for each s ∈ [0, t], and each α ∈ C+, define the matrix

Lb,t(α, s) :=
[
E
[
e−αQ((s,t],t)1{I(t)=y} | I(s) = x

]]
x,y∈E

.

Theorem 3.3. Fix a real number t > 0. For each α ∈ C+, and each s ∈ (0, t),

∂

∂s
Lb,t(α, s) = −

[ ∞∑
ℓ=0

Kℓ(s)(1− (1− e−α)F (t− s))ℓ

]
Lb,t(α, s).

Furthermore, Lb,t(α, t) = I.

Obviously, we have Lb,t(α, 0) = Lf,t(α, t).

Proof. The proof of this result is similar to the proof of Theorem 3.1. For 0 < s < t,

1{I(s)=x}e
−αQ((s,t],t)1{I(t)=y}

= 1{x=y}1{I(s)=x}1{Ay(s,t]=0}

+ 1{I(s)=x}
∑
z ̸=y

∫
(s,t]

1{A(0)
x (s,u)=0}e

−αQ((u,t],t)1{I(t)=y}A
(0)
x,z(du)

+
∑
ℓ≥1

∑
z

1{I(s)=x}
∑
z ̸=y

∫
(s,t]

1{A(0)
x (s,u)=0}e

−
∑ν

j=1 1{Bj(u)>t−u}e−αQ((u,t],t)1{I(t)=y}A
(ℓ)
x,z(du).

Taking the conditional expectation of both sides, with respect to E[· | I(s) = x], then
applying both the Campbell-Mecke formula and the Silvnyak-Mecke formula yields

E[e−αQ((s,t],t)1{I(t)=y} | I(s) = x]

= 1{x=y}e
∫ t
s k0;x,x(u)du

+
∑
z ̸=y

∫ t

s
e
∫ u
s k0;x,x(v)dvk0;x,z(u)E

[
e−αQ((u,t],t)1{I(t)=y} | I(u) = z

]
du

+
∑
ℓ≥1

∑
z

∫ t

s
e
∫ u
s k0;x,x(v)dvkℓ;x,z(u)E[e

−α
∑ℓ

j=1 1{Bj>t−u} ]E
[
e−αQ((u,t],t)1{I(t)=y} | I(u) = z

]
du

After simplifying these equations further and rewriting them in matrix form, we arrive at
the claim.

We conclude the paper by stating a final moment recursion. Fix a real number t > 0,
and for each s ∈ [0, t], and each integer n ≥ 1, define

Mb,n(s) :=
[
E
[
Q((s, t], t)n1{I(t)=y} | I(s) = x

]]
x,y∈E .
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Theorem 3.4. Fix a real number t > 0, and assume there exists an integer m ≥ 0 such
that for each k ∈ {0, 1, 2, . . . ,m+ 1}, the function

∑
ℓ≥1

E


 ℓ∑

j=1

1{Bj>t−s}

k
Kℓ(s)

is finite for each s ∈ [0, t], and continuous almost-surely (with respect to Lebesgue measure)
Then for almost every s ∈ (0, t) (with respect to Lebesgue measure), we have for 0 ≤ n ≤ m
that

∂

∂s
Mb,n+1(s) = −

∑
ℓ≥0

Kℓ(s)

Mb,n+1(s)−
n∑

k=0

(
n+ 1

k

)∑
ℓ≥1

E


 ℓ∑

j=1

1{Bj>t−s}

n+1−k
Kℓ(s)

Mb,k(s).

(9)

Readers should note as well that analogous results can also be derived for shot-noise
models fed by nonhomogeneous MAPs: we leave this to the interested reader.
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