
Noname manuscript No.
(will be inserted by the editor)

On Solving Parametric Multiobjective Quadratic Programs with
Parameters in General Locations

Pubudu L.W. Jayasekara · Andrew C. Pangia · Margaret
M. Wiecek

the date of receipt and acceptance should be inserted later

Abstract While theoretical studies on parametric multiobjective programs (mpMOPs) have been
steadily progressing, the algorithmic development has been comparatively limited despite the fact
that parametric optimization can provide a complete parametric description of the efficient set. This
paper puts forward the premise that parametrization of the efficient set of nonparametric MOPs
can be combined with solving parametric MOPs because the algorithms performing the former can
also be used to achieve the latter.

This strategy is realized through (i) development of a generalized scalarization, (ii) a com-
putational study of selected parametric optimization algorithms, and (iii) applications in a real-life
context. Several variants of a generalized weighted-sum scalarization allow one to scalarize mp-
MOPs to match the capabilities of algorithms. Parametric multiobjective quadratic programs are
scalarized into parametric quadratic programs (mpQPs) with linear and/or quadratic constraints.
In the computational study, three algorithms capable of solving mpQPs are examined on synthetic
instances and two of the algorithms are applied to decision-making problems in statistics and portfo-
lio optimization. The real-life context reveals the interplay between the scalarizations and provides
additional insight into the obtained parametric solution sets.

Keywords Multiobjective quadratic optimization · parametric optimization · parametric linear
complementarity problem · simplex approximation · elastic net · portfolio optimization

Pubudu L.W. Jayasekara
School of Mathematical and Statistical Sciences
Clemson University
Clemson, SC 29634
E-mail: pwijesi@g.clemson.edu

Andrew C. Pangia (Corresponding Author)
School of Mathematical and Statistical Sciences
Clemson University
Clemson, SC 29634
E-mail: apangia@g.clemson.edu

Margaret M. Wiecek
School of Mathematical and Statistical Sciences
Clemson University
Clemson, SC 29634
E-mail: wmalgor@clemson.edu

Conflict of Interest

Funding: The authors gratefully acknowledge support by the United States Office of Naval Research through
grant number N00014-16-1-2725.

Conflicts of interest/Competing interests: The authors have no relevant financial or non-financial interests to
disclose.

Availability of data and material: Not Applicable

Code availability: Code was devised in MATLAB, available on request.

1 Introduction

Many real-life problems in engineering, business, and management are characterized by multiple conflicting
criteria such as cost, performance, reliability, safety, productivity, affordability, and the field of multiobjective
optimization provides models, theories and methods to address these types of applications [17]. In addition to
conflict between objective functions, uncertainty —from unknown or imprecise data, inaccurate measurements,
or inadequate models— is another important characteristic of many real-life decision problems. In the operations
research literature, there are three classical paradigms to model uncertainty: probabilistic, possibilistic, and
deterministic. The latter approach, using crisp sets to define domains within which uncertainties vary, has
given foundation to robust optimization and parametric optimization.

In addition to constants and variables, a parametric optimization problem also contains parameters
which model uncertainty because their values are neither known nor unknown, and not being solved for.
Parameters fundamentally change the problem: the parametric single objective program (mpSOP) is solved to
obtain a solution vector-valued function and the corresponding optimal value function, both of which map the
parameters to the solution space. In contrast, the nonparametric SOP is solved to obtain a specific solution
vector and corresponding optimal value. Similarly, the parametric multiobjective program (mpMOP) is solved
to obtain a parametrized collection of efficient (Pareto) sets, as opposed to a specific efficient (Pareto) set.
Parametric multiobjective optimization offers a bridge to robust multiobjective optimization, which uses various
concepts to yield robust efficient solutions arguably preferred under the conditions of uncertainty. Since robust
efficient solutions correspond to specific values of uncertainty, the robust approach is subsumed in the parametric
approach and the latter emerges as a more universal methodology [49].

Studies on mpMOPs go back to 1979 when Naccache [37] examined the stability of solution sets due
to perturbations in the feasible set. Since then, researchers have worked on parametrization of feasible sets,
objective functions and domination structures, and related stability properties [3,18,29,36,40,41,45]. Parametric
linear programs are analyzed in [5,6], while the polyhedral structure of the efficient set for such problems is more
recently examined in [20,47]. Theoretical works have been accompanied by applied studies. Methods to compute
a family of solution sets for unconstrained problems with a scalar parameter are developed in [13, 34, 51] and
applied to mechatronic systems in which the parameter plays the role of time [52]. The theoretical framework for
a solution method based on a technique which subdivides the solution and parameter spaces is proposed in [44].
In engineering design, genetic algorithms are tailored to the parametric case to allow for design exploration in
the presence of exogenous factors [21,25].

Independently of parametric multiobjective optimization, parametrization of the efficient set of MOPs
can be conducted as a result of treating scalarized MOPs as mpSOPs [50]. This point of view is theoretically

2

On Solving Parametric MOQPs with Parameters in General Locations

examined in [19,23] and used for computational work in [27,28,30,43,46] to obtain different types of parametric
descriptions of the efficient set for MOPs arising in portfolio optimization. In [38], such a description is obtained
for multiobjective quadratic programs (MOQPs) whose objective functions are linearized.

While theoretical and computational studies on mpMOPs have been steadily progressing, the latter
have been rather limited despite the fact that parametric optimization can provide a complete parametric
description of the efficient set regardless of uncertainty in the model. Because mpMOPs can be solved before
their efficient sets are actually needed, in time-sensitive situations, the only computations required are function
evaluations at the specific parameter values stemming from the situation. This benefit, however, comes at the
cost of the increased computational complexity which parametric optimization causes. This paper puts forward
the premise that parametrization of the efficient set can naturally be combined with solving mpMOPs because
the algorithms performing the former can also be used to achieve the latter. The purpose is to examine the state-
of-the-art in algorithmic development for parametric multiobjective quadratic programs (mpMOQPs). Based
on this premise, mpMOQPs are scalarized to be solved as parametric (single objective) quadratic programs
by means of suitable algorithms designed for this class of problems. We develop a generalized weighted-sum
scalarization method that subsumes several established scalarizations and leads to several related SOPs that
can be matched with different solution algorithms. In a computational study, we compare the performance of
three parametric optimization algorithms on mpQPs with linear and/or quadratic constraints that result from
different scalarizations. The algorithms are also applied to mpMOQPs modeling decision-making problems in
statistics and portfolio optimization. By means of these applications, the interplay between the scalarizations
is disclosed and additional insight into the parametric efficient solution sets is obtained.

The paper is structured as follows. In Section 2, we formulate the mpMOQP and define solution
concepts. The generalized weighted-sum method and related scalarizations for MOPs are developed in Section
3. In the subsequent two sections we present algorithms for solving different types of mpQPs that result from
various scalarizations of mpMOQPs. In Section 4 we provide algorithms for mpQPs with linear constraints, while
in Section 5 we present an algorithm for mpQPs with quadratic and linear constraints. In each section, results
from computational tests performed on synthetic problems are included. Section 6 contains the applications
and the paper is concluded in Section 7.

2 Problem Statement

We define the mpMOQP and the solution concepts used to solve this class of problems. We also introduce the
assumptions that are needed by the solution algorithms we present in the subsequent sections.

Let κ, n, r, r̃ ∈ N, r̃ ≤ r, and Rκ,Rn,Rr be Euclidean spaces that are related to the parameter space,
decision or solution space, and objective or outcome space, respectively. Let Θ ⊆ Rκ be a parameter space,
X : Rκ → Rn be a point-to-set map such that X (Θ) ⊆ Rn and X (θθθ) 6= ∅ for all θθθ ∈ Θ. We investigate the
following mpMOQP:

min
x

f(x;θθθ) = [f1(x;θθθ) =
1

2
xTQ1(θθθ)x + pT1 (θθθ)x + c1(θθθ), . . . , fr̃(x;θθθ) =

1

2
xTQr̃(θθθ)x + pTr̃ (θθθ)x + cr̃(θθθ),

fr̃+1(x;θθθ) = pTr̃+1(θθθ)x + cr̃+1(θθθ), . . . , fr(x;θθθ) = pTr (θθθ)x + cr(θθθ)] (MOQP(θθθ))

s.t. x ∈ X (θθθ) = {x ∈ Rn : A(θθθ)x 5 bbb(θθθ),x = 0}
θθθ ∈ Θ,

where A : Θ → Rm×n, bbb : Θ → Rm. The vector valued-objective f : Rn × Θ → Rr is composed of functions
fi : Rn × Θ → R such that Qi : Θ → Rn×n, pi : Θ → Rn and ci : Θ → R for all i = 1, . . . , r. The
vector of parameters θθθ models quantities that are unknown due to lack of knowledge at the time of the MOP
construction. Examples include road capacity, interest rate, selling price, air humidity, material density or other
application-specific values. Throughout this paper we make the following assumptions.

3

Assumption 1 1. The parameter space Θ ⊆ Rκ is a nonempty compact and polyhedral set.
2. The feasible set X (θθθ) for all θθθ ∈ Θ is nonempty compact and convex set.

To perform optimization, we need to be able to compare the outcomes of MOQP(θθθ).

Definition 1 1. Let θθθ ∈ Θ and x1,x2 ∈ X (θθθ). Then f(x1;θθθ)(<)(5) ≤ f(x2;θθθ) if and only if fi(x
1;θθθ)(<) ≤

fi(x
2;θθθ) for all i = 1, . . . , r, where ≤ requires strict inequality for at least one index i, while 5 allows

equality for all i.
2. Let x1,x2 ∈ X (Θ) and i ∈ {1, . . . , r}. Then fi(x

1;θθθ) ≤ fi(x
2;θθθ) if and only if fi(x

1;θθθ) ≤ fi(x
2;θθθ) for all

θθθ ∈ Θ.
3. Let x1,x2 ∈ X (Θ). Then f(x1;θθθ)(<)(5) ≤ f(x2;θθθ) if and only if f(x1;θθθ)(<)(5) ≤ f(x2;θθθ) for all θθθ ∈ Θ.

Solving MOQP(θθθ) for a fixed parameter θθθ = θ̄θθ ∈ Θ is defined as finding the set of (weakly) efficient solutions.

Definition 2 A feasible solution x̂ ∈ X (θ̄θθ) is called (weakly) efficient to MOQP(θθθ) for θθθ = θ̄θθ ∈ Θ if there exists
no other solution x ∈ X (θ̄θθ) such that f(x; θ̄θθ)(<) ≤ f(x̂; θ̄θθ). Let X (w)E(θ̄θθ) denote the set of (weakly) efficient

solutions for θθθ = θ̄θθ.

We assume that XE(θ̄θθ) 6= ∅ for each θ̄θθ ∈ Θ. Solving MOQP(θθθ) for all θθθ ∈ Θ is defined as finding the (weakly)
efficient set XE(θθθ) ⊆ X (θθθ) for each θθθ ∈ Θ.

Definition 3 The set X (w)E ⊆ X (Θ), defined as the collection of the (weakly) efficient sets X (w)E(θθθ), X (w)E :=
{X(w)E(θθθ)}θθθ∈Θ, is called the set of (weakly) efficient solutions to MOQP(θθθ) for all θθθ ∈ Θ.

For each θθθ ∈ Θ, we define the attainable set, Y (θθθ), as the image of the feasible set X (θθθ) under the
vector-valued objective function mapping f

Y (θθθ) := {y ∈ Rr : y = f(x, θθθ),x ∈ X (θθθ)}.

The image of a (weakly) efficient solution to MOQP(θθθ) for θθθ = θ̄θθ ∈ Θ is called a (weak) Pareto outcome. Let
Y(w)P (θ̄θθ) denote the set of all (weak) Pareto outcomes for θθθ = θ̄θθ ∈ Θ.

Definition 4 The set Y(w)P ⊆ Rr, defined as the collection of the (weak) Pareto sets Y(w)P (θθθ), Y(w)P :=
{Y(w)P (θθθ)}θθθ∈Θ, is called the set of (weak) Pareto outcomes to MOQP(θθθ) for all θθθ ∈ Θ.

Scalarization methods can reformulate MOQP(θθθ) into mpSOPs using parameters that are specific to
each method. In effect, the resulting mpSOPs have two types of parameters, those from the original model, θθθ,
and the auxiliary parameters, εεε and λλλ, needed for scalarization. We refer to the former as modeling parameters
and to the latter as scalarization parameters. We further discuss the scalarization parameters in Section 3. The
mpSOPs are solved with parametric optimization algorithms that partition the augmented parametric space
into subsets called invariancy regions (critical regions or validity sets) and compute optimal solution functions
defined on these regions. Under some conditions, the latter can provide the efficient solution functions making
up the set X(w)E for the original MOQP(θθθ).

Based on the state of the art in parametric optimization, we believe that the weighted-sum scalar-
ization, epsilon-constraint scalarization, and their variations are the most useful for solving mpMOQPs. In the
next section, therefore, we propose a generalized weighted sum scalarization for the nonparametric MOP and
reduce it to a variety of SOPs whose optimal solutions are at least weakly efficient to the MOP. We then apply
these scalarizations to mpMOQPs with suitable parametric optimization algorithms.

4

On Solving Parametric MOQPs with Parameters in General Locations

3 Generalized weighted sum scalarization

In this section, to keep the notation simple we depart from the parametric setting, and deal with a standard
(nonparametric) MOP to prepare the ground for the algorithms we present in subsequent sections. We develop
a weighted-sum scalarization encompassing several other scalarizing approaches. This scalarization employs
several sets of parameters whose interplay allows for formulating variants of SOPs that will be useful for
scalarizing mpMOQPs.

In this section only, let g : Rn → Rr denote the vector-valued objective function and let X ⊆ Rn
denote the feasible set. Then consider the MOP

min
x∈X

[g1(x), g2(x), . . . , gr(x)] (MOP)

and define the following sets and parameters for the index set {1, . . . , r}.

Definition 5 Let t ∈ N, t ≤ r. Let the index set {1, . . . , r} be given. Define t + 1 sets J , J1, . . . , Jt, where
J ⊆ {1, . . . , r}, Jj ⊆ {1, . . . , r} for j = 1, . . . , t. Define the sets of parameters

Λ :=

{
λλλ ∈ R|J| : λi ≥ 0, i ∈ J,

∑
i∈J

λi = 1

}

and

M j :=

µµµj ∈ R|Jj | : µji ≥ 0, i ∈ Jj ,
∑
i∈Jj

µji = 1


for all j = 1, . . . , t. For convenience, also define

µµµ :=
[
µµµ1, . . . ,µµµt

]
∈M := M 1 × · · · ×M t.

Making use of Definition 5, consider another MOP in which every objective function is a weighted
sum of the objective functions corresponding to each subset:

min
x∈X

[∑
i∈J

λigi(x),
∑
i∈J1

µ1
i gi(x), . . . ,

∑
i∈Jt

µtigi(x)

]
(MOP’)

These two MOPs have the following relationship.

Proposition 1 Let (MOP) be convex. Then x̂ ∈ X is a weakly efficient solution to (MOP) if and only if x̂ is
a weakly efficient solution to (MOP’) for some λλλ ∈ Λ and µµµ ∈M .

Proof Let x̂ ∈ X be a weakly efficient solution to (MOP). Then, by [22], x̂ is an optimal solution to the SOP

min
x∈X

r∑
i=1

γigi(x) (1)

for some γγγ ∈ Γ , where Γ :=
{
γγγ ∈ Rr : γi ≥ 0, i = 1, . . . , r,

∑r
i=1 γi = 1

}
. Consider now the following weighted

sum problem which derives from (MOP’):

min
x∈X

ρ0

∑
i∈J

λigi(x) + ρ1

∑
i∈J1

µ1
i gi(x) + · · ·+ ρt

∑
i∈Jt

µtigi(x), (2)

5

where

ρρρ := [ρ0, ρ1, . . . , ρt] ∈ P :=

{
ρρρ ∈ Rt+1 : ρi ≥ 0, i = 1, . . . , t+ 1,

t∑
i=0

ρi = 1

}
. (3)

If one can find ρρρ, λλλ, and µµµ such that x̂ is an optimal solution to (2), then, by [22], x̂ will equivalently be weakly
efficient to (MOP’). Similar to the proof of Theorem 4 in [30], take

ρ0λi = γi, i ∈ J

ρjµ
j
i = γi, i ∈ Jj , j = 1, . . . , t

which ensures that ρρρ ∈ P as defined in (3). Then, x̂ is an optimal solution to (2), and equivalently, it is a
weakly efficient solution to (MOP’).

Depending on the definitions of the sets J and Jj , j = 1, . . . , t, different variants of (MOP’) can be
formulated and different SOPs obtained, which may be useful depending on the needs of the optimization solver
being used or the context of the decision situation being modeled. Below six scalarizations are listed among
which the first four are already established in the literature and whose optimal solutions are known to be
(weakly) efficient to (MOP’) and, by Proposition 1, are also weakly efficient to (MOP). Because scalarizations
(8) and (9) are new, in the subsequent propositions their relationships with (MOP) are examined.

Corollary 1 Let (MOP) and (MOP’) be given, and the sets J and Jj, j = 1, . . . , t be defined as in Def. 5. Let
E be a hypercube contained in a Euclidean space of the dimension as specified below.

1. Taking J = {1, . . . , r} converts (MOP’) into the weighted sum SOP associated with (MOP) [22]:

min
x∈X

r∑
i=1

λigi(x) (4)

s.t. λλλ ∈ Λ ⊆ Rr.

2. Let J = {i}, Jj = {j} for all j = 1, . . . , r, j 6= i. Then the ε-constraint scalarization converts (MOP’) into
the εεε-constraint SOP i, i = 1, . . . , r, associated with (MOP) [24]:

min
x∈X

gi(x)

s.t. gj(x) ≤ εj , j = 1, . . . , r, j 6= i (5)

εεε ∈ E ⊆ Rr−1.

3. Let J = {1, . . . , r}, Jj = {j} for all j = 1, . . . , r. Then the ε-constraint scalarization converts (MOP’) into
the hybrid SOP associated with (MOP) [23]:

min
x∈X

r∑
i=1

λigi(x)

s.t. gj(x) ≤ εj , j = 1, . . . , r (6)

λλλ ∈ Λ ⊆ Rr, εεε ∈ E ⊆ Rr.

4. Let p ∈ N, p < r, J ⊂ {1, . . . , r}, |J | = p, Jj = {j} for all j /∈ J . Then the ε-constraint scalarization
converts (MOP’) into the modified hybrid SOP associated with (MOP) [30]:

min
x∈X

∑
i∈J

λigi(x)

s.t. gj(x) ≤ εj , j /∈ J (7)

λλλ ∈ Λ ⊆ Rp, εεε ∈ E ⊆ Rr−p.

6

On Solving Parametric MOQPs with Parameters in General Locations

5. If 0 ≤ t < r, and J and Jj are defined as in Def. 5, then the ε-constraint scalarization converts (MOP’)
into a variant of the hybrid SOP called the weighted hybrid SOP:

min
x∈X

∑
i∈J

λigi(x)

s.t.
∑
i∈Jj

µjigi(x) ≤ εj , j = 1, . . . , t (8)

λλλ ∈ Λ ⊆ R|J|, µµµ ∈M , εεε ∈ E ⊆ Rt.

6. Let p ∈ N, p < r, J ⊆ {1, . . . , r}, |J | = p, Jj = {j} for all j /∈ J . Then the ε-constraint scalarization
converts (MOP’) into a variant of the ε-constraint SOPi called the reduced εεε-constraint, SOPi, i /∈ J :

min
x∈X

gi(x)

s.t.
∑
j∈J

λjgj(x) ≤ ε (9)

gj(x) ≤ εj , j /∈ J, j 6= i

λλλ ∈ Λ ⊆ Rp, εεε ∈ E ⊆ Rr−p.

The weighted hybrid SOP (8) allows for weighing all objective functions in the new objective and
constraints.

Proposition 2 Let x̂ = x̂(λλλ,µµµ,εεε) be an optimal solution to the weighted hybrid SOP (8) for some λλλ ∈ Λ,
µµµ ∈M , and εεε ∈ E . Then x̂ is a weakly efficient solution to (MOP).

Proof Let x̂ = x̂(λλλ,µµµ,εεε) be an optimal solution to (8). Therefore, x̂ is feasible to (8), that is,∑
i∈Jj

µjigi(x) ≤ εj , j = 1, . . . , t. (10)

Assume x̂ /∈ XwE . Then there exists a point x̄ ∈ X such that

gi(x̄) < gi(x̂) for all i = 1, . . . , r. (11)

Applying µji ≥ 0 not all 0, we have µjigi(x̄) ≤ µjigi(x̂), i ∈ Jj with at least one strict inequality, for j = 1, . . . , t.
Then ∑

i∈Jj

µjigi(x̄) <
∑
i∈Jj

µjigi(x̂)

for j = 1, . . . , t, which makes x̄ feasible to (8) with εj =
∑
i∈Jj

µjigi(x̂), j = 1, . . . , t. From (11), we obtain

λigi(x̄) ≤ λigi(x̂) for i ∈ J with at least one strict inequality, and then∑
i∈J

λigi(x̄) <
∑
i∈J

λigi(x̂),

which contradicts the optimality of x̂. Therefore x̂ is weakly efficient to (MOP).

The reduced ε-constraint scalarization (9) is motivated by the difficulty caused by the ε-constraint
approach. When it is applied to (MOP), this method requires r − 1 right-hand-side (rhs) values for the ε-
constraints so that the resulting SOP is feasible. In (9), some or all of the r− 1 ε-constraints are replaced with
one constraint for which only one rhs value is needed, and therefore the resulting SOP is referred to as the
reduced εεε-constraint SOPi, i = 1, . . . , r.

7

Proposition 3 If x̂ = x̂(λλλ,εεε) is an optimal solution to the reduced ε-constraint SOPi (9) for some λλλ ∈ Λ,εεε ∈ E
and some i /∈ J , then x̂ is a weakly efficient solution to (MOP).

Proof Let x̂ = x̂(λλλ,εεε) be an optimal solution to (9) for some i /∈ J . Therefore, x̂ is feasible to (9), that is,∑
j∈J λjgj(x̂) ≤ ε (12)

gj(x̂) ≤ εj j /∈ J, j 6= i. (13)

Assume x̂ /∈ XwE . Then there exists a point x̄ ∈ X such that

gj(x̄) < gj(x̂) for all j = 1, . . . , r. (14)

Applying λj ≥ 0 not all 0, we have λjgj(x̄) ≤ λjgj(x̂), j ∈ J with at least one strict inequality; therefore∑
j∈J λjgj(x̄) <

∑
j∈J λjgj(x̂). Using (12), we obtain∑

j∈J
λjgj(x̄) < ε, (15)

while from (13) and (14),
gj(x̄) < εj j /∈ J, j 6= i. (16)

Since x̄ ∈ X , (15) and (16) make x̄ feasible to (9). From (14), gi(x̄) < gi(x̂), which contradicts the optimality
of x̂. Therefore, x̂ is weakly efficient to (MOP).

The final proposition in this section reveals that the modified hybrid and reduced ε-constraint SOPs
jointly determine the efficiency of a feasible solution to a strictly convex (MOP).

Proposition 4 Let (MOP) be strictly convex. A feasible solution x̂ ∈ X is efficient to (MOP) if and only if
x̂ = x̂(λλλ,εεε) is an optimal solution to the modified hybrid SOP (7) such that gj(x̂) = εj , j /∈ J , and is also an
optimal solution to the reduced ε-constraint SOPi (9) such that

∑
j∈J λjgj(x̂) = ε and gj(x̂) = εj, j /∈ J , j 6= i,

for some λλλ ∈ Λ ⊆ Rp and εεε = (ε, εj1 , . . . , εjr−p) ∈ E ⊆ Rr−p+1, where jk /∈ J , j 6= i for all k = 1, . . . , r − p for
each i /∈ J .

Proof From Corollary 7 in [30], a solution x̂ ∈ X is efficient to (MOP) if and only if x̂ = x(λλλ) is efficient to

minx∈X

(∑
j∈J λjgj(x), gj1(x), . . . , gjr−p(x)

)
for some λλλ ∈ Λ ⊆ Rp. Theorem 4.1 in [8] then yields the desired

result.

In the next two sections we present algorithms for solving MOQP(θθθ) that is scalarized with the
approaches presented in this section.

4 Parametric Quadratic Programs with Linear Constraints

In this section we present methods to solve a variation of mpMOQPs in which the quadratic objective functions
do not carry parameters and are given as

min
x

f(x;θθθ) = [f1(x) =
1

2
xTQ1x + pT1 x, . . . , fr̃(x) =

1

2
xTQr̃x + pTr̃ x,

fr̃+1(x;θθθ) = pTr̃+1(θθθ)x, . . . , fr(x;θθθ) = pTr (θθθ)x] (MOQP1(θθθ))

s.t. x ∈ X (θθθ) = {x ∈ Rn : A(θθθ)x 5 bbb(θθθ),x = 0}
θθθ ∈ Θ,

8

On Solving Parametric MOQPs with Parameters in General Locations

where Qi, i = 1, . . . , r̃, are positive (semi-)definite n× n matrices, and elements in pi(θθθ), i = r̃+ 1, . . . , r, A(θθθ),
and bbb(θθθ) are affine functions of θθθ. Under these assumptions and Assumption 1, MOQP1(θθθ) is a convex problem
for every θθθ ∈ Θ . This class of mpMOQPs can be reformulated into mpQPs, that is, parametric programs with
quadratic objective functions and linear constraints. Scalarizing MOQP1(θθθ) with the weighted (4) or modified
hybrid (7) approaches becomes relevant to this solution approach if the linear objectives are put into the ε-
constraints that are included in the feasible set X (θθθ) while all the quadratic objectives are combined in the
weighted sum objective. In effect, we obtain an mpQP that is still challenging to solve due to the parameters
present in the quadratic objective function and constraints.

In [30], four state-of-the-art methods to solve mpQPs are compared. Only one of these methods, the
mpLCP method [2] based on the linear complementarity problem (LCP) reformulation of the original problem,
can solve mpQPs with parameters in general locations. The study in [30] does not include a method that has been
developed much earlier in [48] but has only few citations. It solves specially structured single-parametric QPs
(spQPs) with a parameter in a general location and is therefore suitable to solve (nonparametric) biobjective
quadratic programs (BOQPs) with the weighted-sum SOP. Because this method is also based on the LCP
reformulation, it is referred to as the spLCP method. Since both the spLCP method and the mpLCP method
have the same mathematical roots, but the efficiency of the former is unknown, it is of interest to compare
their performance on solving spQPs that emerge from BOQPs.

Leading to the mpLCP method, below we review the LCP reformulation for MOQP1(θθθ) assuming
it has been scalarized with the modified hybrid SOP (7). We then focus on the spLCP method, giving its
algorithms and presenting their application to a BOQP example. We compare the efficiency of both methods
on a collection of BOQP instances.

4.1 The mpLCP method

Redefining the set Λ as Λ′ =
{
λλλ ∈ Rr̃ : λi ≥ 0, i = 1, . . . , r̃,

∑r̃−1
i=1 λi ≤ 1, λr̃ = 1−

∑r̃−1
i=1 λi

}
and applying (7)

to MOQP1(θθθ), the resulting mpQP can be written as:

min
x

f(x;λλλ) =
1

2
xTQ(λλλ)x + p(λλλ)Tx

s.t. Ã(θθθ)x 5 b̃bb(θθθ, εεε)
x = 0
θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E ,

(17)

where Q(λλλ) =
∑r̃
i=1 λiQi and p(λλλ) =

∑r̃
i=1 λipi for λλλ ∈ Λ′, and Ã : Θ →∈ Rm̃×n, b̃bb : Θ → Rm̃, m̃ = m+ r− r̃.

The linear inequality constraints have been modified to include the εεε-constraints of the form pTi (θθθ)x 5 εi for
i = r̃ + 1, . . . , r, where εεε ∈ E ⊆ Rr−r̃ is a new parameter introduced into the model so that the problem remains
feasible. When the KKT conditions for optimality are applied to (17), the multiparametric LCP (mpLCP) is
constructed, which consists in finding a solution (w, z) = (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) that satisfies the following
parametric system:

w−M(θθθ,λλλ)z = q(θθθ,λλλ,εεε)

wT z = 0

w, z = 0

θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E

(18)

where M(θθθ,λλλ) =

[
Q(λλλ) Ã(θθθ)T

−Ã(θθθ) 0

]
∈ Rh×h, q(θθθ,λλλ,εεε) =

[
p(λλλ)

b̃(θθθ, εεε)

]
∈ Rh, h = n+m̃, and w =

[
r
s

]
, z =

[
x
u

]
, where

s = 000 is a slack variable associated with the linear inequality constraints and u and r are the dual variables
associated with the linear and nonnegativity constraints respectively. Since Qi, i = 1, . . . , r̃, are assumed to be

9

positive (semi-)definite, so is Q(λλλ) for every λλλ ∈ Λ′. Consequently, matrix M(θθθ,λλλ) is also positive (semi-)definite
for every θθθ ∈ Θ and λλλ ∈ Λ′, and therefore it is sufficient [12].

Definition 6 Let θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E and B be a basis of the linear system in (18).

1. The associated solution (w, z) = (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) = 000 to the linear system in (18) is a basic solution.
2. A basis B is complementary if |{i, i+ h} ∩B| = 1 for i = 1, . . . , h.
3. A complementary basis B is feasible if the associated basic solution is feasible, i.e., w, z = 000.
4. For a feasible complementary basis (FCB), the associated basic feasible solution (w, z) to (18) is called the

basic feasible complementary solution (BFCS).

The reader is referred to [2] for a state-of-the art study on mpLCPs or to [9–12, 32] for theory and
algorithms for LCPs. The solutions to mpLCP (18) are related to the efficient solution to MOQP1(θθθ) in the
following proposition.

Proposition 5 Let Qi, i = 1, . . . , r̃, be positive-definite in MOQP1(θθθ).

If (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) =

([
r(θθθ,λλλ,εεε)
s(θθθ,λλλ,εεε)

]
,

[
x(θθθ,λλλ,εεε)
u(θθθ,λλλ,εεε)

])
is a BFCS to mpLCP (18) for some θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E

then x = x(θθθ,λλλ,εεε) is an efficient solution to MOQP1(θθθ).

Proof Since MOQP1(θθθ) is a convex problem for every θθθ ∈ Θ, so is mpQP (17) for every θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E .
Therefore, the KKT necessary optimality conditions for (17), which assume the form of mpLCP (18), are also

sufficient. For some θθθ ∈ Θ,λλλ ∈ Λ′, εεε ∈ E , vector (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) =

([
r(θθθ,λλλ,εεε)
s(θθθ,λλλ,εεε)

]
,

[
x(θθθ,λλλ,εεε)
u(θθθ,λλλ,εεε)

])
is a BFCS

to (18) if and only if x(θθθ,λλλ,εεε) is an optimal solution to (17). Since Qi, i = 1, . . . , r̃, are positive-definite, the
second order sufficient conditions for optimality also hold at x. Then, by Cor. 8(1) in [30], x = x(θθθ,λλλ,εεε) is an
efficient solution to MOQP1(θθθ).

The mpLCP method is the first and only method to solve mpLCPs (18) with multiple parameters in
general locations, i.e., in matrix M or vector q, under the assumption that M is a sufficient matrix for all values
of the parameters [2]. The parameter space Θ×Λ′×E is partitioned into possibly nonconvex invariancy regions
over which the mpLCP solution (w(θθθ,λλλ,εεε), z(θθθ,λλλ,εεε)) is computed. The method consists of two phases. In Phase
I, an initial invariancy region is found, while in Phase II, the invariancy regions making up the partition are
identified. The method performs symbolic computation and provides a closed-form parametric description of
the invariancy regions in the form of polynomial inequalities and the associated solutions in the form of rational
functions. Using Proposition 5, these solutions provide the efficient solutions to MOQP1(θθθ).

4.2 The spLCP method

The theory for the spLCP method was developed by Väliaho [48] but the proposed algorithm has not been
implemented. It is the first ever method to solve spLCPs with a scalar parameter in the matrix M . The spLCP
method solves the BOQP of the form

min
x

[1
2xTQ1x + pT1 x, 1

2xTQ2x + pT2 x] (BOQP)

s.t. x ∈ X := {x ∈ Rn : Ax 5 bbb,x = 0},

10

On Solving Parametric MOQPs with Parameters in General Locations

where Qi ∈ Rn×n, i = 1, 2, is positive definite, pi ∈ Rn, A ∈ Rm×n, and bbb ∈ Rm. Note that (BOQP) has to
fulfill additional assumptions that are given in Assumption 2 below. Redefining Λ′ = {λ ∈ R : λ ∈ [0, 1]} and
applying (4) to (BOQP), the resulting spQP is

min
x

f(x;λ) = 1
2xTQ(λ)x + p(λ)Tx (19)

s.t. x ∈ X ,

where Q(λ) = λQ1 + (1− λ)Q2 and p(λ) = λp1 + (1− λ)p2.

Problem (19) leads to an spLCP that this method solves. The parameter space Λ′ is partitioned into
subintervals, say [λ′, λ′′], such that (w(λ), z(λ)) is a BFCS for the spLCP for λ ∈ [λ′, λ′′]. The method is based
on a pivoting scheme and solving nonparametric LCPs obtained when λ is fixed at some values in the interval
[0, 1] starting with 0. Once a BFCS has been obtained for a specific value of λ, the invariancy interval for λ
for which this solution remains feasible is found. The method consists of two phases. Phase I is designed to
find an initial BFCS. If such a solution is available, Phase II is conducted. In this phase the parameter λ and
the associated FCB get updated until λ = 1. The method outputs a list of λ values in the interval [0, 1] and
the associated BFCS. In the subsequent sections we present the spLCP method as a collection of algorithms to
complement the theoretical exposition in [48].

4.2.1 Reformulation of spLCP

Given (19) and the resulting spLCP with Λ′ = [0, 1], rewrite matrix Q(λ) and vector p(λ) as Q(λ) = Q2 +
λ(Q1 −Q2), and p(λ) = p2 + λ(p1 − p2). Then matrix M(λ) and vector q(λ) can be decomposed as:

M(λ) = M + λ∆M, q(λ) = q +λ∆q,

where M =

[
Q2 AT

−A 0

]
∈ Rh×h,∆M =

[
Q1 −Q2 0

0 0

]
∈ Rh×h, q =

[
p2

b

]
∈ Rh, and ∆q =

[
p1 − p2

0

]
∈ Rh. The

spLCP can be written as:

w−
(
M + λ∆M

)
z = q +λ∆q

wT z = 0

w, z = 0.

(20)

and is referred to as the spLCP(M(λ),q(λ)) or simply the spLCP if the context is known.

The method is developed under the following assumptions that determine the class of spQPs (19)
(and also BOQPs) that can be solved:

Assumption 2 1. Q1 −Q2 is positive definite.
2. p1 − p2 is in the column space of Q1 −Q2.
3. Q2 − δ(Q1 −Q2) is positive semidefinite for some δ > 0.

Based on Assumption 2(1), rank(∆M) = n. This assumption also assures that the Cholesky decomposition can
be applied to matrix ∆M , which produces auxiliary matrices used in the spLCP method.

4.2.2 Full Rank Factorization of Matrix ∆M

The method is equipped with matrix factorization needed to modify spLCP (20) into an augmented spLCP.
Consider a full rank matrix factorization of matrix ∆M

∆M = ΨΨT ,

11

where Ψ ∈ Rh×n is a lower triangular matrix with positive diagonal elements. Given ∆M =

[
Q1 −Q2 0

0 0

]
,

matrix Ψ is composed of two matrices such that Ψ =

[
Ψ1

0

]
, where Ψ1 ∈ Rn×n is a lower triangular matrix and

0 is a zero matrix of size m× n . Then[
Q1 −Q2 0

0 0

]
= ∆M = ΨΨT =

[
Ψ1

0

] [
ΨT1 0T

]
=

[
Ψ1Ψ

T
1 0

0 0

]
.

Note that only the matrix Q1 − Q2 in the block (1, 1) of ∆M is decomposed, i.e., Q1 − Q2 = Ψ1Ψ
T
1 , and the

Cholesky decomposition is used to obtain Ψ1.

In the spLCP method, the parameter λ is updated in every iteration. In this update, further discussed
in Section 4.2.6, a vector κκκ ∈ Rn, which is computed below, is used. Let

∆q = Ψκκκ, (21)

or equivalently [
p1 − p2

0

]
=

[
Ψ1

0

]
κκκ,

which is simplified to
p1 − p2 = Ψ1κκκ. (22)

System (22) is solved for κκκ using the forward substitution method. Having computed Ψ and κκκ, an augmented
spLCP is constructed.

4.2.3 Initialization and Overview

Let λ ∈ [0, 1] be fixed in spLCP (20). Given Ψ and κκκ from the factorization, and letting v ∈ Rh and vκκκ ∈ Rn,
the augmented spLCP is formulated:([

I1 0
0 I2

]
−
[
M(λ) −Ψ
ΨT 0

])[
vB
vκκκ

]
=

[
q(λ)
κκκ

]
vB = 0

vκκκ free,

(23)

where I1 is an h × h identity matrix and I2 is an n × n identity matrix. For the linear system in (23), let
E = {1, . . . , h, h + n + 1, . . . , 2h + n}, a set B ⊂ E be a complementary basis for the linear system in (20),
i.e., if |B| = h, then the set N = E \ B is such that |N | = h. Then vB = vB(λ) = {vi(λ) : i ∈ B} and
vN = vN (λ) = {vi(λ) : i ∈ N} are the vectors of basic and nonbasic variables respectively in (20) and (23).
Both these vectors consist of the variables in w = w(λ) and z = z(λ). The vector vκκκ consists of the variables
that are always basic for (23) but are considered dummy with no meaning in the solution to (20).

Since the goal is to solve (23) for vB(λ) for a fixed λ ∈ [0, 1], for the initial basis B0 = {1, . . . , h} in
(20), the entire problem (23) is saved in an initial Simplex-type Tableau TB0

(λ) as given in Table 1. Tableau
TB0

(λ) has h+n rows and 2(h+n)+1 columns. Let E′ = {1, 2, . . . , 2h+n} be the set of indices of 2h+n columns
starting from the second column and ending at the (2h+ n)th column, and let K = {2h+ n+ 1, . . . , 2h+ 2n}
be the set of indices of the last n columns of Tableau 1. Note that neither E′ nor K contain the first column,
ggg.0. At the beginning of Phase I, the right hand side of the linear system in (23), q(λ), is stored in the first h
rows of column ggg.0. The last n rows of ggg.0 contain the vector κκκ obtained by solving (21). At the end of both
phases, the solution vector vB(λ) is retrieved from the first h rows of column ggg.0.

The pivoting operations in the tableau convert a complementary basis into another complementary
basis. Two types of pivotal operations are defined but neither of them guarantees a new FCB.

12

On Solving Parametric MOQPs with Parameters in General Locations

Table 1: Initial Tableau TB0
(λ)

ggg.0 ggg.1, . . . ,ggg.h ggg.(h+1), . . . ,ggg.(h+n) ggg.((h+n)+1), . . . ,ggg.(2h+n) ggg.((2h+n)+1), . . . ,ggg.(2h+2n)

v1

...
vh

q(λ) I1 0 M(λ) −Ψ

vκ1

...
vκn

κκκ 0 I2 ΨT 0

Definition 7 For index i ∈ E′, the complementary index of i is defined as

ī =

{
i+ n+ h if i ≤ h
i− n− h otherwise

Definition 8 1. Replacing a single element of a basis with its complement is called a diagonal pivot.
2. Replacing two elements of a basis with their complements is called an exchange pivot.

Phase I is executed to find an initial BFCS for spLCP (20) for the case when λ = 0 and q � 0. When λ = 0
and q ≥ 0, the method starts with Phase II in which a nonparametric LCP is solved for a specific value of the
parameter λ that is subsequently updated. The pseudocode for solving spLCP (20) is given in Algorithm 1. In
the initial Tableau TB0

(λ), λ = 0.

Let TB0
(λ)i,0 be the element in the ith row and the first column of Tableau TB0

(λ). If TB0
(λ)i,0 < 0 for at

least one i ∈ {1, . . . , h}, Phase I is executed before Phase II. However, if all those elements are nonnegative,
the algorithm begins directly with Phase II.

Algorithm 1: spLCP Method

Input : Initial Tableau TB0
(λ)

Output: Solution (z(λ),w(λ)) for each λ.
Set λ = 0
if TB0 (λ)i,0 < 0 for at least one i ∈ {1, . . . , h} then

Goto Phase I (apply Algorithm 2)
Goto Phase II (Algorithm 3)

else
Goto Phase II (Algorithm 3)

4.2.4 Phase I

In Phase I, the Criss-Cross Method (given in Algorithm 2) is used to find an initial BFCS for spLCP (20) for
the case when λ = 0 and q � 000. The Criss-Cross Method solves the nonparametric LCP obtained from the
spLCP with a fixed λ [14]. Let λ = λ̄ be fixed, B0 be an initial complementary basis, vB0

(λ̄) = w(λ̄) be a
vector of basic variables, and vN (λ̄) = z(λ̄) be a vector of nonbasic variables. If q(λ̄) ≥ 0, i.e., if TB0

(λ̄)i,0 ≥ 0
for all i = 1, . . . , h, then the algorithm stops immediately and (w(λ̄) = q(λ̄), z(λ̄) = 0) is the initial BFCS for
spLCP (20). Otherwise q(λ̄) � 0 and pivoting is used to obtain a complementary basis B′ which is adjacent
to the current basis B by replacing at most two elements in B. If the pivot element is negative, the diagonal
pivot is executed, and if the pivot element is zero, the exchange pivot is executed. Let TB(λ̄)r,r̄ be the element
in Tableau TB(λ̄) associated with index r ∈ B and its complementary index r̄ ∈ N . The element TB(λ̄)r,r̄

13

becomes the pivot element if the index r ∈ B is chosen as the smallest index with a negative entry in the first
column in the Tableau TB(λ̄), and r̄ ∈ N . If there is no such r, i.e., TB(λ̄)i,0 ≥ 0 for all i = 1, . . . , h, the
algorithm stops; thus, B is a FCB and a BFCS for spLCP (20) has been found.

Algorithm 2: Criss-Cross Method

Input : TB0
(λ̄), B0

Output: BFCS to spLCP (20) with λ = λ̄
if TB0

(λ̄)i,0 ≥ 0 for all i = 1, . . . , h then
STOP, a BFCS has been found.

else
Set B = B0.
while TB(λ̄)i,0 ≤ 0 for at least one i ∈ {1, . . . , h} do

Let r = min{i ∈ B : TB(λ̄)i,0 < 0}
if TB(λ̄)r,r̄ < 0 then

make diagonal pivot, new basis B′ = B \ {r} ∪ {r̄}
else if TB(λ̄)r,r̄ = 0 then

Let k = min{j : TB(λ̄)r,j < 0 or TB(λ̄)j,r > 0}
if TB(λ̄)r,k × TB(λ̄)k,r < 0 then

make exchange pivot, new basis B′ = B \ {r, k} ∪ {r̄, k̄}
else

STOP. LCP is infeasible
else

STOP. LCP is infeasible

Set B = B′ and TB(λ̄) = TB′ (λ̄)

4.2.5 Phase II

In Phase II, the parameter λ and basis B are consecutively updated. Let B be a complementary basis in (20).
For a given λ, let TB(λ) denote the tableau with h + n + 1 columns consisting of the first (0th) column, h
columns associated with the current nonbasic variables, and the last n columns of the tableau in Table 1.

For each i = 1, . . . , h and K, define the following auxiliary vector

Bi0 =

(
TB(λ)i,0, (−1)1TB(λ)i,KTB(λ)n,0, (−1)2TB(λ)i,KTB(λ)n,KTB(λ)n,0, (24)

. . . , (−1)nTB(λ)i,KTB(λ)n−1
n,KTB(λ)K,0

)
,

where the terms in (24) denote the following elements in tableau TB(λ).

– TB(λ)i,0 - the element in the ith row and the first (0th) column,
– TB(λ)i,K - the vector of elements in the ith row and all columns associated with the index set K,
– TB(λ)n,0 - the vector of elements in the last n rows and the first (0th) column,
– TB(λ)n,K - the matrix of elements in the last n rows and all columns associated with the index set K.

To continue we need the following definition.

Definition 9 Let υυυ ∈ Rh. We say that

1. υυυ is lexicographically positive (negative), υυυ � 0 (υυυ ≺ 0), if its first nonzero component is positive (negative).
2. υυυ is lexicographically nonnegative (nonpositive), υυυ � 0 (υυυ � 0), if υυυ = 0 or υυυ � 0 (υυυ = 0 or υυυ ≺ 0).

14

On Solving Parametric MOQPs with Parameters in General Locations

Phase II is presented in Algorithm 3 that runs until a BFCS is obtained for λ = 1. If a vector Bi0 � 0
for some i = 1, . . . , h, the parameter λ is updated using Algorithm 4. Otherwise, the current complementary
basis is updated using Algorithm 6.

Algorithm 3: Phase II

Input : Current Tableau TB(λ) s.t. TB(λ)i0 ≥ 0 for i = 1, . . . , h, B
Output: Solution (z(λ),w(λ)) to spLCP (18)
while λ ≤ 1 do

if Bi0 � 0 for all i = 1, . . . , h then
Update λ (Algorithm 4)

else
Update B (Algorithm 6)

4.2.6 Updating Parameter λ

Parameter λ is updated in Algorithm 4. Two types of polynomial equations, Pi1(τ) = 0, for i = 1, . . . , h, and
P2(τ) = 0, are solved to obtain an increment τ of the parameter λ, which is at some current value between 0
and 1. Let αi denote the smallest positive root of the polynomial equation Pi1(τ) = 0 for each i = 1, . . . , h.
Then the smallest αi value is recorded as ρ1. Similarly, the smallest positive root of P2(τ) = 0 is recorded as
ρ2. If the roots of the polynomial equations are not positive, we set ρ1 =∞ or ρ2 =∞ accordingly. Then the
smallest value among 1− λ, ρ1 and ρ2 is recorded and denoted as ρ, i.e., ρ = min{1− λ, ρ1, ρ2}. Based on the
value of ρ, one of three strategies is applied to update λ. If ρ = 1 − λ, the current tableau is feasible for the
invariancy interval [λ, 1]. If the condition Bi0 � 0 holds for TB0

(1), the algorithm stops and spLCP (20) has
been solved for λ ∈ [0, 1]. Otherwise, the basis has to be updated. If ρ = ρ1, the current tableau is feasible for
the invariancy interval [λ, λ+ρ1] and the initial tableau is updated using Algorithm 5. If ρ = ρ2, set λ = λ+ρ2

in the initial Tableau TB0
(λ) and the condition Bi0 � 0 is subsequently checked.

4.2.7 Updating the Initial Tableau when ρ = ρ1

Algorithm 5 is designed to provide a new initial tableau when ρ = ρ1 in Algorithm 4. Let I be an n×n identity
matrix. First, the matrix −ρ−1

1 I is added to the matrix TB0
(λ)n,K . Then pivotal operations are performed on

all variables in the last n rows. In the third step, multiply elements in the last n rows by −ρ−1
1 and then the

columns j ∈ K by ρ−1
1 of TB(λ). In the last step, the matrix −ρ−1

1 I is added to the matrix TB0
(λ)n,K . These

operations provide an initial tableau for the next iteration with the initial basis B0. The first column of the
starting Tableau TB0

(λ+ ρ1) is independent of all the steps in Algorithm 5.

4.2.8 Updating Basis B

Let TB(λ) be the current tableau for a complementary basis B and for a parameter value λ, as defined in
Phase II. If Bi0 ≺ 0 for at least one i ∈ {1, . . . , h} in Algorithm 3, then the basis B is not feasible for system
(23) for the current value of λ. Then Algorithm 6 is run and the Criss-Cross Method (Algorithm 2) is invoked
to find a FCB for the current value of λ.

15

Algorithm 4: Updating λ

Input : Current Tableau TB(λ) such that Bi0 � 0 for all i = 1, . . . , h
Output: New λ
1. for i = 1, . . . , h do

solve
Pi1(τ) =

(
det
(
TB(λ)n,K + τ−1I

)) (
TB(λ)i,0 − TB(λ)i,K(TB(λ)n,K + τ−1I)TB(λ)n,0

)
= 0

Let αi =

{
min{τ |Pi1(τ) = 0} if τ > 0

∞ o.w.

set ρ1 = min{α1, . . . , αh}
2. Solve

P2(τ) = det
(
TB(λ)n,K + τ−1I

)
= 0

set ρ2 =

{
min{τ |P2(τ) = 0} if τ > 0

∞ o.w.

Set ρ = min{1− λ, ρ1, ρ2}
if ρ = 1− λ then

STOP; the Tableau TB(λ) is feasible for [λ, 1]. Obtain TB0
(1). Go to Phase II (Algorithm 3)

else if ρ = ρ1 then
the tableau TB(λ) is feasible for [λ, λ+ ρ1]. Set λ = λ+ ρ1

if there exists some i ∈ {1, . . . , h} for which TB0
(λ)i,0 � 0 then

Update the initial Tableau TB0
(λ) using Algorithm 5. Go to Phase II (Algorithm 3)

else
Go to Phase II (Algorithm 3)

else
Set λ = λ+ ρ2 and update the Tableau TB0

(λ). Go to Phase II (Algorithm 3)

Algorithm 5: Updating the initial tableau

Input : The initial Tableau TB0
(λ+ ρ1)

Output: new Tableau TB0
(λ)

1. Add −ρ−1
1 I to TB0

(λ)n,K
2. Perform the pivotal operation on all variables in the last n rows.
3. Multiply elements in the last n rows by −ρ−1

1 and then columns j ∈ K by ρ−1
1 of TB0

(λ).

4. Add −ρ−1
1 I to TB(λ)n,K .

5. Go to Phase II (Algorithm 3) with current Tableau TB0
(λ).

Algorithm 6: Updating B

Input : Current Tableau TB0
(λ) such that Bi0 ≺ 0 for at least one i ∈ {1, . . . , h}

Output: new Tableau TB(λ) such that Bi0 � 0
while Bi0 ≺ 0 do

Run Criss-Cross Method (Algorithm 2)

4.3 Example

We illustrate the spLCP and mpLCP methods on the following BOQP:

min

[
1
2

[
x1 x2

] [6 0
0 14

] [
x1

x2

]
+
[
9 −5

] [x1

x2

]
, 1

2

[
x1 x2

] [2 0
0 5

] [
x1

x2

]
+
[
−1 1

] [x1

x2

]]
s.t.

[
3 5
] [x1

x2

]
≤ 15

x1, x2 ≥ 0,

(25)

16

On Solving Parametric MOQPs with Parameters in General Locations

and the associated spLCP:w1

w2

w3

−
 2 0 3

0 5 5
−3 −5 0

+ λ

4 0 0
0 9 0
0 0 0

z1

z2

z3

 =

−1
1
15

+ λ

10
−6
0


wizi = 0 i = 1, 2, 3,
wi, zi ≥ 0 i = 1, 2, 3,

(26)

where λ ∈ [0, 1]. We have n = 2,m = 1, and h = n + m = 3. The iterations of Phase I and II of the spLCP
method are given in the Appendix while the obtained solutions are given in Table 2. Four efficient solutions are
computed, each of them for a specific value of λ ∈ [0, 1]. For comparison, Table 3 shows the solutions obtained
by the mpLCP method for the same example. The two methods provide the same invariancy intervals but the
solutions are available in different forms. The spLCP method gives the efficient solutions at the end points of
the invariancy intervals while the mpLCP method gives the efficient solutions as functions of the parameter λ
for each interval.

Table 2: Efficient solutions to Example (25)
obtained with the spLCP method

λ x1 x2

0 1/2 0
1/10 0 0
1/6 0 0
1 0 5/14

Table 3: Efficient solutions to Example
(25) obtained with the mpLCP method

λ x1 x2

0 ≤ λ ≤ 1/10
(1−10λ)
(2+4λ)

0

1/10 ≤ λ ≤ 1/6 0 0

1/6 ≤ λ ≤ 1 0
(−1+6λ)
(5+9λ)

4.4 Numerical Results

To compare the efficiency of the spLCP and mpLCP methods, we implement them in the MATLAB program-
ming language and apply them to randomly generated strictly convex BOQPs satisfying Assumption 2. The
code of the mpLCP method is available online [1]. The tests have been performed on a Lenovo Ideapad FLEX
4 with a 256 GB SSD storage, 6th Generation Intel Core i5-6200U, 2.30GHz, 2401 Mhz, 2 Cores, 4 Logical
Processors and 8GB memory.

The results of the numerical experiments are collected in Table 4 in which the first column shows the
dimension of the decision space, n, and the second column displays the number of instances that have been run
for each n. The third column specifies the statistics given in the subsequent columns. The 4th and 5th columns
report CPU times for diagonal positive definite matrices, Q1, Q2 ∈ Rn×n while the 6th and 7th columns report
the CPU times for general positive definite matrices, Q1, Q2 ∈ Rn×n. The times in each row are given for the
same set of instances that are solved using both methods.

The MATLAB function rand randomly generates the matrices Qi and vectors pi, i = 1, 2, for the
BOQPs. Generating instances that satisfy Assumption 2 for the spLCP method is time-consuming and the
time it takes to generate each instance is not included in the table.

There are two major computational tasks that affect the efficiency of each method: the type of com-
putations being performed, and the way polynomial equations are solved. Because the spLCP method relies
on a pivoting scheme with real numbers rather than on symbolic computation as used in the mpLCP method,
we expected that the former might be superior to the latter. However, the spLCP method uses the MATLAB
function solve to solve the polynomial equations in Algorithm 4, while the mpLCP method solves SOPs with
linear objective functions and polynomial constraints by means of the MATLAB function fmincon with the

17

interior-point algorithm. We suspect that the difference in the effectiveness of these two MATLAB functions
may influence each method.

We observe in Table 4 that, as the number of decision variables, n, increases for both types of BOQPs,
the mpLCP method becomes more efficient relative to the spLCP: its mean, median, and standard deviations
times get consistently smaller than the respective times for the spLCP method. The function fmincon emerges
as a significantly more effective tool than the function solve because it offsets the time spent on the symbolic
pivoting by the mpLCP method. As a result, given the current MATLAB environment, the mpLCP method
remains the state-of-the art method for MOQPs.

Table 4: Statistics for the CPU times for BOQPs solved with the spLCP and mpLCP methods.

n
no. of

instances
statistics

diagonal diagonal+off-diagonal
spLCP mpLCP spLCP mpLCP

2 10
mean 10.492 9.239 13.569 10.840
median 7.793 7.954 12.971 9.800
std. dev. 6.692 2.618 4.301 3.370

3 10
mean 16.491 9.885 54.782 42.269
median 15.843 9.708 57.167 39.439
std. dev. 5.582 3.086 25.947 24.258

4 5
mean 113.167 116.000 163.269 117.658
median 95.871 110.780 156.310 127.808
std. dev. 44.842 22.892 74.853 34.983

5 4
mean 216.483 146.758 517.849 199.559
median 228.215 152.844 491.297 205.487
std. dev. 84.863 22.144 158.765 105.393

5 Parametric Quadratic Programs with Quadratic Constraints

An application of the εεε-constraint formulation (5) causes MOQP(θθθ) to assume the form of a parametric quadrat-
ically constrained quadratic program (mpQCQP) formulated as

min
x

fi(x;θθθ) = 1
2xTQi(θθθ)x + pTi (θθθ)x + ci(θθθ)

s.t. x ∈ X (θ, εθ, εθ, ε) = {x ∈ Rn : (QCQP(θ, εθ, εθ, ε))

fj(x;θθθ, εj) = 1
2xTQj(θθθ)x + pTj (θθθ)x + cj(θθθ, εj) ≤ 0 j = 1, . . . , r̃, j 6= i,

Ã(θθθ)x 5 b̃bb(θθθ, εεε),

x = 0}

θθθ ∈ Θ,εεε ∈ E ⊆ Rr−1,

where i ∈ {1, . . . , r̃}, Ã : Θ → Rm̃×n, b̃bb : Θ ×E → Rm̃, m̃ = m + r − r̃. Recall that Θ ⊆ Rκ is polyhedral as
defined in Assumption 1. Scalarizing MOQP(θθθ) into QCQP(θ, εθ, εθ, ε), the coefficients cj(θθθ) have been redefined into
cj(θθθ, εj) = cj(θθθ) − εj to account for the scalarizing parameter εj , j = 1, . . . , r̃, j 6= i, and the linear inequality
constraints have been modified as in (17) to include the εεε-constraints of the form pTj (θθθ)x + cj(θθθ) ≤ εj for

j = r̃ + 1, . . . , r, where εεε ∈ E ⊆ Rr−1 is a new parameter introduced into the model so that the problem
remains feasible.

Despite the fact that many algorithms have been developed to solve parametric nonlinear programs
with parameters in various locations [42], we believe there is no algorithm that exactly solves mpQPs of type
QCQP(θ, εθ, εθ, ε). A potential candidate could be the parametric quadratic approximation (mpQA) algorithm [31]
which solves parametric nonlinear programs. Making use of quadratic approximation of the objective function

18

On Solving Parametric MOQPs with Parameters in General Locations

and linear approximation of the constraints, this algorithm transforms the original problem into an mpQP that,
however, does not allow parameters in the left-hand-side of the linear constraints. Parameters are included in
the left-hand-side of the linear constraints in [53] but the functions only contain terms bilinear in x and
parameters. Very recently, an algorithm for a class of mpQCQPs was proposed in [39], but it does not take into
account parameters in the quadratic form of x. Given the state-of-the art in parametric optimization, to solve
QCQP(θ, εθ, εθ, ε) we choose a parametric approximate simplex (mpAS) method [4] that relies on linear interpolation
of all nonlinear functions. Since the numerical effectiveness of this method has not been examined, we intend
to investigate the tradeoff between its simplicity and the quality of its obtained optimal solutions.

In addition to Assumption 1 that now holds for Θ × E , we make the following assumptions about
QCQP(θ, εθ, εθ, ε) that are required by the AS method.

Assumption 3 1. The dimension of the parameter space Θ ⊆ Rκ is κ.
2. The matrices Qi(θθθ), i = 1, . . . r̃, are positive semi-definite for all θθθ ∈ Θ.

3. The elements in Qi,pi, ci, i = 1, . . . , r̃, Ã, and b̃bb are convex functions of θθθ.

Since the last assumption is required for computation of the error between the true value of the objective function
and its approximation, it might be relaxed if that error was defined differently. Note that the constraints are
all affine with respect to εεε due to formulation (5), so there are no assumptions with respect to εεε other than
feasibility.

5.1 The mpAS method

The mpAS method is given in Algorithm 8. The combined parameter space is redefined as Ξ := Θ×E such that
(θθθ, εεε) = ξξξ ∈ Ξ. Using processing methods in Multiparametric Toolbox [26], Ξ is first partitioned into a set of
simplices Ξk, k = 1, . . . , s. Note s is finite because Θ and E are assumed to be polyhedral. For a given simplex,
Ξk, let ζζζkj , j = 1, . . . , sk, be its vertices. For each ζζζkj , QCQP(θ, εθ, εθ, ε) is solved to get objective values fi(ζζζ

k
j) and

vectors x(ζkj). These objective values and vectors are then used to compute linear interpolations of the optimal
objective function, f̄(θθθ, εεε), and of the optimal solution function, x̄(θθθ, εεε) to QCQP(θ, εθ, εθ, ε). Treating x and ξξξ as
variables, the maximum error between the approximation and the actual objective function is computed. If
this error is too large or the split limit has not been reached, Ξk is split into smaller simplices and this process
is repeated on each new simplex. At termination, the parameter space Ξ has been partitioned into simplices
called invariancy regions and the associated approximate optimal objective function has been constructed as a
piecewise linear function of the parameters. The approximate optimal solution functions are also available.

The mpAS algorithm proposed in [4] assumes that the program being solved is jointly convex in x, θθθ, εεε.
In problem generation, we settled for mere biconvexity due to the scaling problems from forcing joint convexity.
However, this relaxation does not adversely affect the performance of the algorithm.

5.2 Numerical Results

Having not found significant benchmarking of the mpAS algorithm in the literature, we make our own to gauge
general effectiveness. We have implemented mpAS in MATLAB building off of code found in [33] and applied
it to randomly generated convex QCQPs with one and two parameters. The tests have been run on a Dell
Inspiron 3153 with a 128 GB SSD (8 GB free), 8 GB RAM, running an Intel Core i3-6100U 2.30 GHz processor
with two cores and four logical processors running Windows 10 Enterprise.

In both the results here and the applications in Section 6, we only split the parameter spaces five times
in order to maintain useful visual distinctions in the invariancy regions. Table 5 contains the mean, median,

19

Algorithm 7: Multiparametric Approximate Simplex Algorithm

Input : The initial polyhedron, Ξ = Θ ×E over which to solve QCQP(θ, εθ, εθ, ε), error tolerance, split limit
Output: piecewise function xK(ξξξ) for some terminal K ∈ N, and piecewise optimal function fi(x

K ;ξξξ)
Step 0: Partition parameter space Ξ into a set of simplices Ξt, t = 1, . . . , s, and set desirable tolerance and split limit.
Step t: for each t = 1, . . . , s

For each vertex ζζζk of Ξt, compute vectors x(ζζζk) and objective values fi(ζζζ
k).

Compute linear interpolations f̄(ξξξ) and x̄(ξξξ).
Compute error.

if error within tolerance or split limit reached then
stop

else
Split Ξi into smaller simplices, which add to the set {1, . . . , s}.

and standard deviations of the time and approximation error for a set of single-objective parametric QCQPs
which take the form of problem QCQP(θ, εθ, εθ, ε) with r = 2, r̃ = 2, m = 1, κ ∈ {1, 2}, E = {0}. For κ = 2, the
quadratic constraint and objective function are affine in θθθ. Note that ε ∈ E = {0}, so we henceforth refer only
to θθθ.

Two MATLAB functions are utilized: randn randomly generates the coefficient matrices and vectors
using a normal distribution, and fmincon performs the minimizations at the corresponding steps of Algorithm 7
using the SQP method with the default number of iterations. In addition, Multi-Parametric Toolbox (MPT) [26]
is utilized to construct the simplices.

The generation of each instance is extended from [15]. Generating the quadratic constraint, xTQ(θθθ)x+
pT (θθθ)x + ccc(θθθ) ≤ bbb(θθθ), such that it is guaranteed to be feasible is as follows. If we assume functions of θ ∈ [0, 1]
are affine in θ, then

ccc(θ) := ccc1 + ccc2θ

p(θ) := p1 + p2θ

Q(θ) := Q1 +Q2θ

We randomly generate p1,p2 ∈ Rn and ccc1, ccc2 ∈ R. To choose the locations of θ in p(θ), we generate a 0-1 matrix
Rp ∈ Rn×n and rccc ∈ {0, 1}. Then p(θ) := p1+p2Rpθ and ccc(θ) := ccc1+ccc2rcccθ are randomly chosen. Guaranteeing
the positive semi-definite nature of Q(θ) proceeds as follows. Let P (θ) := P1 + P2RP θ with P1, P2 ∈ Rn×n
randomly generated in the same manner as for p(θ) and ccc(θ), with RP ∈ Rn×n being a randomly generated
0-1 matrix like Rp. Then Q(θ) = PT (θ)P (θ) is guaranteed to be positive semi-definite, but is not affine in θ.
Therefore for κ = 2, we choose to guarantee the affine nature by replacing all appearances of θ2 with a second
parameter θ2 ∈ [0, 1]. The result is that Q(θ1, θ2) = PT (θ1)P (θ1), with θ2 replacing θ2

1, is now PSD and affine
in θθθ = (θ1, θ2). To ensure feasibility of the quadratic constraint, we select b̄bb to be the vector of all ones and

define bbb(θ) := b̄bb
T
Q(θθθ)b̄bb+ pT (θθθ)b̄bb+ ccc(θθθ). The linear constraint and objective function are generated in the same

manner, with the linear constraint using the same chosen b̄bb.

For κ = 2, poorly scaled instances were sometimes generated when data came from the same distribu-
tion (standard normal). To eliminate such issues, the size of the parameter space was altered for each n. We let
Θ = [0, 1]× [0, 1] for n = 2, Θ = [0.1, 0.9]× [0.1, 0.9], for n = 3, and Θ = [0.2, 0.6]× [0.2, 0.6] for n ∈ {4, 5}. The
downside to this approach is the possibility of losing the convexity as required in Assumption 3.2. However,
this did not affect the results.

In Table 5, we observe that, as expected, the time increases both as the number of variables grows
and as the number of parameters grows, but more so increasing going from κ = 1 to κ = 2. For two parameters
(κ = 2), we observe that some instances extend over large function values; this results in misleadingly large
error values. To account for this, we divide the function error by the difference of the largest and smallest
minimum objective values. Because we do this after applying the mpAS algorithm with a split limit of five, the
errors for objective values which do not change much over the parameter space increase, while the errors for

20

On Solving Parametric MOQPs with Parameters in General Locations

more variant objective values decrease. The error is stable as the number of variables increases, but it increases
substantially going from κ = 1 to κ = 2, even with the error normalization and the limiting of the κ = 2 case
to being affine in θθθ. We consider the error values to be small enough to warrant applying mpAS to mpMOQPs
to obtain insight into its application context that will be complementary to that obtained with the mpLCP
method.

Table 5: Statistics for the CPU times (in seconds) and objective function errors for parametric QCQPs solved
with the mpAS method.

n
no. of

instances
statistics

κ = 1 κ = 2
time error time error

2 10
mean 0.319 0.168 0.332 0.122
median 0.231 0.025 0.393 0.013
std. dev. 0.238 0.437 0.198 0.224

3 10
mean 0.552 0.041 1.034 0.244
median 0.439 0.026 0.562 0.174
std. dev. 0.550 0.042 1.219 0.283

4 10
mean 1.110 0.164 2.785 0.325
median 0.861 0.055 1.579 0.363
std. dev. 0.905 0.272 2.839 0.239

5 10
mean 1.271 0.126 1.093 0.355
median 1.075 0.074 0.585 0.275
std. dev. 0.791 0.125 1.216 0.325

6 Applications

In this section we apply the scalarizations presented in Section 3 and the algorithms examined in Sections 4
and 5 to specific mpMOQPs resulting from applications in statistics and portfolio optimization.

6.1 The Elastic Net Problem

We show that the presented methodology can enhance linear regression when the elastic net problem is solved
to select regression parameters. Let the data set have n observations with k predictors. Consider the standard
linear regression model in which the response y ∈ Rk is predicted by

ŷ = Φx, (27)

where Φ =
[
φ1φ1φ1 φ2φ2φ2 . . . φnφnφn

]
∈ Rk×n is the design matrix with predictors φiφiφi ∈ Rk and x ∈ Rn is the vector

of “parameters” to be estimated. Here the word “parameters” has a different meaning than in parametric
optimization. In statistics, the response and the predictors are both known, while the vector of parameters
(typically denoted by β̂) remains unknown and needs to be estimated so that the residual squared error is
minimized. In the context of optimization, the unknown parameters become variables to be determined in the
process of minimizing the squared error, which is modeled as the QP

minx∈Rn f1(x) = 1
2xTQx + pTx + c, (28)

where Q = 2ΦTΦ is positive-definite, p = −2ΦTy and c = yTy. To avoid confusion, we refer to these parameters
x as coefficients of (27). Because model (27) performs poorly in both prediction and interpretation when the
estimated coefficients are computed from (28), this QP has been augmented by two penalty terms: the ridge

21

term imposes an `2-penalty while the lasso term imposes an `1-penalty on x [54]. This leads to the elastic net
problem.

minx∈Rn felastic-net(x;α, β) = 1
2xTQx + pTx + c+ α

2 xTx + β
∑n
i=1 |xi|

α, β ≥ 0,
(29)

where α, β play the role of modeling parameters (in agreement with the terminology introduced in Section 2).
Because these parameters strongly affect the performance of model (27), they require tuning.

In [7], the parameter tuning is modeled as a bilevel optimization problem involving minimization of
the squared error on the efficient set of the triobjective QP (TOQP)

minx∈Rn [f1(x) = 1
2xTQx + pTx + c, f2(x) = 1

2xTx, f3(x) =
∑n
i=1 |xi|], (30)

for which (29) is the associated weighted-sum SOP. Since the optimization over the efficient set remains challeng-
ing [50], an algorithm is proposed to compute the minimum squared error (minSE) with respect to continuously
changing values of β but on a user-selected-grid of fixed values of α. Because of the grid, an optimal solution
to the bilevel problem may not be achieved.

The methodology presented in this paper can further facilitate parameter tuning because (30) can
now be solved for its complete parametric efficient set which then can be used to find α, β yielding the smallest
squared error. We demonstrate this application on a simple example with n = 3, k = 5, the following data

Φ =


1 2 1
1 3 2
1 2 2
1 4 5
1 3.5 2.5

 y =


0.55
0.623
0.587
0.569
0.758

 , (31)

and by solving (30) in three ways.

6.1.1 The weighted-sum SOP

Applying the weighted-sum (4) to (30) yields the following mpQP:

minx∈R3 λ1(1
2xTQx + pTx + c) + λ2

2 xTx + (1− λ1 − λ2)
∑n
i=1 |xi|

λ ∈ Λ′,
(32)

where Λ′ = {λλλ ∈ R2 : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1}. The problem is reformulated to make all variables nonnegative
which at the same time transforms f3 into a linear function. Having solved (30) with the mpLCP method, we
obtain a partition of Λ′ into 6 invariancy regions (IR) and the optimal solution functions x̂i(λ1, λ2), i = 1, 2, 3
to (32) in each region that are all listed in Table 7. To return to the original parameters, we substitute

λ1 =
1

1 + α+ β
and λ2 =

α

1 + α+ β
(33)

in Table 7 and obtain the invariancy regions and the optimal solutions x̂i(α, β), i = 1, 2, 3 for α, β ≥ 0 in Table
8. The partitions of both parameter spaces are depicted in Figure 1a and 1b. For all λλλ ∈ Λ′ \ {(0, 0)}, by Cor. 1
in [30], all optimal solutions to (32) are efficient to (30). In the case of λλλ = (0, 0), note that f3(x) has a unique
minimizer which is also efficient.

The Pareto set for (30) is depicted in Figure 2, while Figure 3a shows the points (α, β, f̂1(α, β)) =
(α, β, f1(x̂(α, β)) for (32), where f1(x̂(α, β)) is the minSE. In all four figures the same colors are consistently

22

On Solving Parametric MOQPs with Parameters in General Locations

used for the same regions and the associated Pareto points. Using the obtained solutions, model (27) is available
in the parametric form

ŷ = Φ x̂(α, β)

where x̂(α, β) =
[
x̂1(α, β) x̂2(α, β) x̂3(α, β)

]T
is the efficient solution to (30) for α, β ≥ 0.

The solutions x̂(α, β) listed in Table 8 are rational functions of parameters α and β and their denom-
inators are polynomial functions of α with a degree of at most 3. For a fixed α = ᾱ ≥ 0, all these solutions are
linear functions of β and the the optimal squared error f1(x̂(ᾱ, β)) is a quadratic function of β for β ≥ 0 in
IRi, i = 2, . . . , 6. These observations agree with the results in [7].

The decision maker (DM) can examine the invariancy regions and select values for the tuning param-
eters to obtain the regression coefficients. While the zero solution obtained in I R 1 for β > 9.07 is typically
ignored in linear regression, the efficient solutions in the other regions can be of interest. In some regions, the
components of the solutions are explicitly zero which agrees with the intention of keeping the linear regression
model parsimonious [54].

For example, with two nonzero components in the efficient solution, IR3 bears further investigation.

Note that for ᾱ = 1 and β̄ = 0.3, x̂ = x̂(1, 0.3) =
[
0.028 0.181 0

]T
is in IR3 with the minSE of f1(x̂) = 0.332.

Consider, now, IR3 with ᾱ = 1. Then x̂ = x̂(1, β) =
[
0.17− 0.472β 0.126β + 0.143 0

]T
for β ∈ [0.134, 0.359] in

IR3 and the minSE is given by the function f1(x̂) = f1(x̂(ᾱ, β)) = 0.107β2 + 0.121β + 0.064. Computing β̂ =
arg minβ{f1(x̂(ᾱ, β)) : β ∈ [0.134, 0.359]}, the DM can find β̂ = 0.134 that yields the minSE of f1(x̂(ᾱ, β̂)) =
0.083.

6.1.2 The εεε-constraint SOP

The εεε-constraint formulation may be more attractive to the DM than the weighted-sum (32) because the
squared error, as the primary criterion, is directly minimized while the values of the secondary criteria are
controlled by the scalarization parameters ε2 and ε3.

minx∈R3
1
2xTQx + pTx + c

s.t. 1
2xTx ≤ ε2 (34)

3∑
i=1

|xi| ≤ ε3

εεε ∈ E .

By computing x1 = argminx f1(x), we establish E = [0, f2(x1) = 0.186]×[0, f3(x1) = 0.601]. We solve (34) with
the mpAS method and the obtained approximate optimal solutions, x̃(εεε), by Prop. 4.3 in [16], are approximate
weakly efficient to (30). In Figure 3b, the approximate minSE, f̃1(ε2, ε3), is depicted, along with the Pareto
points (0.194, 0.605, 0.012), (0.016, 0.203, 0.207), (0.038, 0.195, 0.116), and (0, 0, 1.933), labeled A, B, C, and D,
respectively. Placing these Pareto points also in Figure 2 allows one to see that the approximation works well.
Note that point A is beyond the unconstrained minimum of f1(x) and thus is not located on the weak Pareto
set computed by applying the mpAS method to (34). The optimal solutions are available for every region in
the partition.

Consider the region containing ε̄εε = (0.119, 0.506),

IR =

εεε ∈ E :

 0.853 −0.502
−0.709 0.655
−0.940 0.334

[ε2
ε3

]
≤

−0.144
0.262
0.072

 .

23

(a) Parameters λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1. (b) Parameters α, β ∈ [0, 10].

Fig. 1: Partition of the parameter space into six invariancy regions for elastic net problem (30) obtained by the
mpLCP method on problem (32).

Fig. 2: Pareto set for elastic net problem (30) obtained by the mpLCP method on problem (32).

Then the optimal solution on this region is

x̃(εεε) =

 1.539ε2 + 0.267ε3 − 0.041
−1.002ε2 + 0.320ε3 + 0.123
0.537ε2 − 0.413ε3 + 0.083


with the approximate minSE function f̃1(εεε) = 0.188ε2 − 0.249ε3 + 0.126. Note that f2(ε̄εε) = 0.094 and f3(ε̄εε) =
0.456, which result in the εεε-constraints being approximately active.

According to [35], if the εεε-constraints are active at optimality of (34),

∂f̂1(εεε)

∂ε2
= −λ2

λ1
,

∂f̂1(εεε)

∂ε3
= −λ3

λ1
= − (1− λ1 − λ2)

λ1
,

where (λ1, λ2) is established in (32). Using (33) and the solutions x̃(εεε), we can approximate values of the
coefficients α and β

α̃(εεε) = −∂f1(x̃(εεε))

∂ε2
, β̃(εεε) = −∂f1(x̃(εεε))

∂ε3

24

On Solving Parametric MOQPs with Parameters in General Locations

(a) minSE computed by the mpLCP method on problem
(32) .

(b) Approximate minSE computed by the mpAS method
on problem (34).

Fig. 3: The minSE for elastic net problem (30)

and calculate
f1(x̃) = 0.968ε22 − 0.812ε2ε3 + 0.129ε2 + 0.805ε23 − 0.817ε3 + 0.245.

Then
α̃(εεε) = − (2 · 0.968ε2 − 0.812ε3 + 0.129) ,

and
β̃(εεε) = − (−0.812ε2 + 2 · 0.805ε3 − 0.817) .

Hence
α̃(ε̄εε) = 0.052, β̃(ε̄εε) = 0.099. (35)

Observe in Figure 3b that α and β are the negatives of the slopes of the minSE in Figure 3a. The solution
associated with parameters α and β in (35) is in IR6 of Table 8.

6.1.3 The reduced εεε-constraint SOP

Alternatively, the two secondary criteria may be combined into one constraint in the reduced εεε-constraint
formulation for (30), which results in the following mpQCQP

minx∈R3
1
2xTQx + pTx + c

s.t. 1
2λxTx + (1− λ)

3∑
i=1

|xi| ≤ ε (36)

λ ∈ [0, 1], ε ∈ E .

Problem (36) is presented in [54] and referred to as the naive elastic net problem, while the function λ
2λxTx +

(1−λ)
∑3
i=1 |xi| is called the elastic net penalty. The authors of [54] solve this problem only for fixed values of

the parameters λ and ε, while the approach presented here obtains optimal solutions for the entire parameter
space.

Using x1, the unconstrained minimizer of f1, we select E = [0, 0.6], as ε > 0.6 results in f1 attaining its
global minimum, which is not of interest. Solving (36) with the mpAS method, we obtain the optimal solutions
that, by Prop. 3, are weakly efficient to (30). The approximate minSE as a function of λ and ε is depicted in
Figure 4. Note that ε constrains the λ-weighing of f2 and f3.

25

Fig. 4: Approximate minSE for elastic net problem (30) obtained by the mpAS method on problem (36).

As an example, consider the region containing λ̄ = 0.955, ε̄ = 0.087,

IR =

(λ, ε) :

 0.707 0
−0.105 0.994
−1 0

[λ
ε

]
≤

 0.707
0.0158
−0.452

 .

Then the optimal solution on this region is

x̃(λ, ε) =

 0.704λ+ 2.235ε− 0.682
−0.096λ+ 0.203ε+ 0.243
−0.134λ− 0.892ε+ 0.169


with the approximate minSE function f̃1(λ, ε) = −0.092λ − 0.880ε + 0.215. Using the reduced-ε-constraint
formulation, the DM can set λ̄ = 0.955 and ε̄ = 0.087 to obtain the coefficients for fitting a curve to the data
being x̃(λ̄, ε̄) = (0.185, 0.169,−0.037). Based on how the approximated minSE value, f̃1(λ̄, ε̄) = 0.04, compares
to other minSE values for other values of λ and ε, the DM can decide whether the obtained coefficients are
appropriate.

6.2 Portfolio Optimization

Consider the parametric triobjective portfolio optimization problem (TOPOP) with two quadratic objectives
being the variances of portfolio return and liquidity and one parametric linear objective being the expected
return,

minx∈R3

[
f1(x) = 1

2xTQ1x, f2(x) = 1
2xTQ2x, f3(x; θ) = −ppp3(θ)Tx

]
s.t. 1Tx = 1

x = 0,

(37)

and with the following data

Q1 =

 1 0 −1
0 2 0
−1 0 2.5

 , Q2 =

 3 −1 0
−1 4 1
0 1 3.5

 , ppp3(θ) =

−13.5
20
θ

 for θ ∈ [15, 17].

26

On Solving Parametric MOQPs with Parameters in General Locations

A nonparametric version of this problem is solved in [30]. The modeling parameter θ represents the un-
certain expected return on the capital invested in the third security. Solving this problem requires com-
puting the set of (weakly) efficient solutions X (w)E := {X(w)E(θ)}θ∈[15,17] and (weak) Pareto outcomes
Y(w)P := {Y(w)P (θ)}θ∈[15,17], as given in Def. 3 and 4.

6.2.1 The modified-hybrid SOP

Problem (37) is reformulated with the modified hybrid method (7) that is particularly suited to this applica-
tion. The two risk functions are combined using a parameter λ that allows the DM to weigh these functions
differently, while the uncertain expected return (to be maximized) is bounded from below by another parame-
ter ε. Additionally, the equality constraint is reformulated into two inequalities. We obtain an mpQP to type
(17) with the modeling parameter θ and two parameters λ and ε which, despite their scalarization role, fit the
context of this application very well:

minx∈R3
1
2xTQ(λ)x

s.t. Ã(θ)x 5 b̃(ε)

x = 000

θ ∈ Θ = [15, 17], λ ∈ Λ′ = [0, 1], ε ∈ E = [−20, 13.5],

(38)

where Q(λ) = λQ1 + (1− λ)Q2, and

Q(λ) =

3− 2λ λ− 1 −λ
λ− 1 4− 2λ 1− λ
−λ 1− λ 7/2− λ

 , Ã(θ) =

13.5 −20 −θ
1 1 1
−1 −1 −1

 , b̃(ε) =

 ε
1
−1

 .
The parameter intervals Θ and E are normalized. Applying θnor = θ−θmin

θmax−θmin = θ−15
17−15 we have

Θnor = [0, 1]. Applying εnor = ε−εmin

εmax−εmin = ε+20
13.5−(−20) , where εmin = min{−p(θ)T3 x : 1Tx = 1,x = 0, θ ∈

[15, 17]} = −20 and εmax = max{−p3(θ)Tx : 1Tx = 1,x = 0, θ ∈ [15, 17]} = 13.5, we have Enor = [0, 1].

The mpLCP method Problem (38) is solved in the parameter space Θnor×Λ′×Enor = [0, 1]3 with the mpLCP
method. At optimality, the parameter space is partitioned into three invariancy regions, IRi, i = 1, 2, 3,
that are depicted in Figure 5 and listed in Table 9 along with their respective optimal solution functions
x̂i(θ, λ, ε), i = 1, 2, 3 that, by Proposition 5, are efficient to (38). We have

XE = {x̂i(θ, λ, ε), i = 1, 2, 3 for θ ∈ [15, 17], λ ∈ [0, 1], ε ∈ [−20, 13.5]}.

Note that the efficient solutions in IR1 do not depend on λ and the efficient solutions in IR3 do not depend
on θ and ε. However, in IR2, the efficient solutions depend on all three parameters. To show the evolution of
the parametric Pareto sets YP (θ) in the objective space w.r.t. θ, three Pareto sets for selected values of θ are
depicted in Figure 6 and the coordinates of four points are reported in Table 6 for comparison. Note that point
A in IR3 remains Pareto for each value of θ.

Table 6: Coordinates of four Pareto points in Figure 6 for portfolio problem (37)

θ 15 16 17
f1(x) f2(x) f3(x) f1(x) f2(x) f3(x) f1(x) f2(x) f3(x)

A 1.000 2.000 −20.000 1.000 2.000 −20.000 1.000 2.000 −20.000
B 0.576 1.276 −18.320 0.556 1.232 −18.320 0.537 1.188 −18.320
C 0.173 0.530 −3.455 0.173 0.530 −3.664 0.173 0.530 −3.873
D 0.120 0.650 0.360 0.120 0.650 0.040 0.120 0.648 −0.280

27

Fig. 5: Partition of the parameter space for portfolio problem (37) obtained with the mpLCP method on
problem (38).

(a) θ = 15 (b) θ = 16

(c) θ = 17

Fig. 6: Pareto sets YP (15),YP (16),YP (17) ⊂ YP for portfolio problem (37) obtained with the mpLCP method
on problem (38).

A similar analysis to that in [30] can be carried out for θnor ∈ [0, 1]. Assume that (i) the vectors ppp3(θ)
and 1 are linearly independent for all θ ∈ Θ and (ii), at optimality of problem (38), the inequality ε-constraint is
active and all the nonnegativity constraints are inactive for a subset of the parameter space. Then the optimal
objective value function in (38), being the minimum weighted risk (MWR), σ̂(θ, λ, ε), can be obtained in this
subset of the parameter space [30]

σ̂(θ, λ, ε) = 1
2

[
ε 1
]
Ψ(θ, λ)−1

[
ε
1

]
, (39)

where

Ψ(θ, λ) =

[
ppp3(θ)TQ(λ)−1ppp3(θ) −ppp3(θ)TQ(λ)−11

−ppp3(θ)TQ(λ)−11 1TQ(λ)−11

]
.

28

On Solving Parametric MOQPs with Parameters in General Locations

For θ ∈ Θ, λ ∈ Λ′ the matrix Ψ(θ, λ) is PD as is its inverse; therefore, σ̂(θ, λ, ε) is a strictly convex quadratic
function of ε.

Since the assumptions (i) and (ii) above hold in IR2, we further examine the obtained MWR function
and the associated efficient solution functions in this region. From (39), the MWR function is available for
normalized parameters,

σ̂(θnor, λ, εnor) = 1
2

[
33.5εnor − 20 1

]
Ψ(θnor, λ)−1

[
33.5εnor − 20

1

]
. (40)

Letting λ = 0.5 and assuming a desired gain of 9, i.e., ε = −9 and εnor = 0.328, this function becomes

σ̂(θnor, 0.5, 0.328) = (368(θnor)2 − 120θnor + 68, 435)/(8(96(θnor)2 + 860θnor + 19, 695)),

which is decreasing for θnor ∈ [0, 1]. Thus, the lowest MWR, σ̂(1, 0.5, 0.328) = 0.416, is achieved at θnor = 1.
The associated efficient portfolio

x̂(θnor, 0.5, 0.328) =


112(θnor)2+1,220.056θnor+10,991.736

192(θnor)2+1,720θnor+39,390
80(θnor)2−319.922θnor+15,373.866

192(θnor)2+1,720θnor+39,390
819.866θnor+13,024.398

192(θnor)2+1,720θnor+39,390

 , θnor ∈ [0, 1],

is equal to x̂(1, 0.5, 0.328) =
[
0.298 0.367 0.335

]T
for θnor = 1.

We now analyze the MWR with respect to the bound ε on the negative expected return that is
minimized.

Corollary 2 Let the matrices Q1, Q2 be positive definite and the vectors ppp3(θ) and 1 be linearly independent
for all θ ∈ Θ for TOPOP (37). At optimality of problem (38), let the inequality ε-constraint be active and all
the nonnegativity constraints be inactive for a subset of the parameter space Θ×Λ′×E . Then at the value of the
expected return ε̂ = arg minε∈E ′ σ̂(θ, λ, ε), the lowest MWR w.r.t. ε, σ̂(θ, λ, ε̂), is independent of the parameter
θ.

Proof Solving ∂σ̂(θ,λ,ε)
∂ε = 0 for ε, we obtain ε̂ = ε̂(θ, λ) = −ppp3(θ)TQ(λ)−11

1TQ(λ)−11
. Substituting ε̂ into (39) we get

σ̂(θ, λ, ε̂) = 1
21TQ(λ)−11

, which is independent of θ.

We can illustrate Corollary 2 on IR2 because this region satisfies the required assumptions. The lowest

MWR, σ̂(θ, λ, ε̂) = 1
21TQ(λ)−11

= −(6λ3+15λ2−86λ+71)
2(6λ2+36λ−67) , can be calculated by the DM for any λ ∈ [0, 1]. For

example, if λ = 0.5, then σ̂(θ, 0.5, ε̂) = 0.342. The corresponding bound, ε̂, can be calculated for a specific value
of θ ∈ [15, 17]. For example, given λ = 0.5 and choosing θ = 17, we have ε̂(17, 0.5) = −3.342 or ε̂nor = 0.497,
which is the upper end value for εnor in IR2.

The mpAS method We also solve (38) with the mpAS method to compare its performance against the mpLCP
method. Since the mpAS method does not require equality constraints to be relaxed, we solve the following
problem:

minx∈R3
1
2xTQ(λ)x

s.t. 13.5x1 − 20x2 − θx3 ≤ ε (41)

1Tx = 1

x = 000

θ ∈ Θ, λ ∈ [0, 1], ε ∈ E .

29

(a) λ = 0.25. (b) λ = 0.5. (c) λ = 0.75.

Fig. 7: Approximate MWR obtained with the mpAS method on problem (38).

Fig. 8: Approximate Pareto points for (37) and θ = 16 computed by the mpAS method on problem (41).

where Q(λ), Θ, and E are defined in (38), with Θ and E normalized.

To further demonstrate Corollary 2, λ̄ ∈ {0.25, 0.5, 0.75} is taken and the MWR is plotted against
εnor and θnor in Figure 7. Notice that the values of the MWR do not change over θnor ∈ [0, 1].

Due to the fact that the approximations of x are in terms of λ, ε, and θ, to readily compare the
solution of problem (38) to the solution of problem (41), we consider the vertices, (λ̄, ε̄), of the invariancy regions
containing θ̄ = 16. We then graph the return f3(x(λ̄, ε̄, 16)) against the risks f1(x(λ̄, ε̄, 16)) and f2(x(λ̄, ε̄, 16)),
and overlay the points on Figure 6b. The results are in Figure 8. Note that, while the mpLCP method provides
a complete description of the Pareto set, the mpAS method is capable of providing a good approximations on
its own.

30

On Solving Parametric MOQPs with Parameters in General Locations

(a) θ = 15. (b) θ = 16. (c) θ = 17.

Fig. 9: Approximate weak Pareto sets for (37) obtained by the mpAS method on problem (42).

6.2.2 The εεε-constraint SOP

The εεε-constraint formulation allows us to treat the return maximization as the primary objective while the
values of each risk are controlled parametrically.

minx∈R3 − ppp3(θ)Tx

s.t. 1
2xTQ1x ≤ ε1
1
2xTQ2x ≤ ε2 (42)

1Tx = 1

x = 000

θ ∈ Θ, εεε ∈ E .

Note that E = [εmin
1 , εmin

2] × [εmax
1 , εmax

2], where εmin
1 , εmax

1 , εmin
2 , and εmax

2 , are computed by individually
optimizing each criterion in problem (37) using θ = 16. Then εmin

1 = 0.120 and εmin
2 = 0.530, while εmax

1 =
max{f1(x̂2), f1(x̂3)} = 1, εmax

2 = max{f2(x̂1), f2(x̂3)} = 2, where x̂i is the minimizer of fi.

The graphs in Figure 9 depict the weak Pareto sets for problem (37) [24]. Note that ε1 constrains
f1 and ε2 constrains f2. The figures have been rotated to show all four points from Table 6, and the narrow
invariancy regions caused by numerical discrepancies are included in Figures 9a and 9c for completion. Note
that points A, B, and C from Table 6 are included in the obtained approximate solutions, while D, also a Pareto
point, is not. Nevertheless, this example demonstrates that the mpAS method provides relevant information
and can be applied if necessary.

By holding θ̄ constant, the DM can readily see how limiting the risk with various values ε̄εε affects the
return. Suppose that the return is θ̄ = 17, and the DM wishes to limit the risks with ε̄εε = (0.517, 1.445). Then
the encapsulating invariancy region is

IR =

(ε1, ε2, θ
nor) :


0.774 0.155 −0.463
−0.569 −0.340 −0
−0.822 0.292 0.312

0.6 0 0.528


 ε1
ε2
θnor

 ≤


0.403
−0.749
0.379
0.600


 .

The optimal solution on this region,

x̃(ε1, ε2, θ
nor) =

−0.789ε1 − 0.011ε2 − 0.059θnor + 0.489
0.731ε1 − 0.011ε2 + 0.016θnor + 0.212
0.05ε1 + 0.0219ε2 + 0.043θnor + 0.299


31

(a) θ = 15. (b) θ = 16. (c) θ = 17.

Fig. 10: Approximate optimal return obtained by the mpAS method on problem (43).

has the approximate negative return function f̃3(εεε, θnor) = −26.173ε1 − 0.290ε2 − 2.545θ − 2.069. Then the
amounts to be invested are found by the mp-AS to be x̃(0.517, 1.445, 1) = (0.036, 0.583, 0.382) yielding a
negative return f̃3(0.517, 1.445, 1) = −17.590, which is a gain of 17.590.

6.2.3 The reduced εεε-constraint SOP

In the reduced εεε-constraint formulation, the return is still maximized while the parametrized weighted-sum of
both risk functions is parametrically controlled.

minx∈R3 − ppp3(θ)Tx

s.t. 1
2λxTQ1x + 1

2 (1− λ)xTQ2x ≤ ε (43)

1Tx = 1

x = 000

θ ∈ Θ, λ ∈ [0, 1], ε ∈ E .

Note that solving the εεε-constraint formulation gives the weak Pareto set as seen in Figure 9, but
the weak Pareto set is not readily available from solving the reduced-εεε-constraint formulation. As a result, we
instead provide Figure 10. We note that as we fix θ̄, adjusting the weighting of the risks (the value of λ) affects
the return given a total risk bound ε̄, as is expected. Likewise notice that Figure 10 demonstrates that, for
fixed λ̄, decreasing the total allowable risk, ε, will result in a lower return.

Consider the region containing λ̄ = 0.613, ε̄ = 0.639, θ̄ = 0.5 corresponding to a return value of 16.
Then the encapsulating invariancy region is

IR =

(λ, ε, θnor) :


0 0.469 −0.881

0.415 −0.903 −0.014
−0.707 0 0.707
0.373 0.590 0.009


 λ

ε
θnor

 ≤


0.056
−0.108

0
0.716


 .

The optimal solution on this region,

x̃(λ, ε, θnor) =

−0.179λ− 0.283ε− 0.004θ + 0.343
0.245λ+ 0.184ε− 0.040θ + 0.310
0.005λ+ 0.212ε+ 0.046θ + 0.210


has the approximate negative return function f̃3(λ, ε,θnor) = −7.336λ − 10.738ε − 0.733θnor − 4.725. Then
x̃(λ̄, ε̄, θ̄) = (0.050, 0.558, 0.372) yields f̃3(λ̄, ε̄, θ̄) = −16.451, which is a gain of 16.451.

32

On Solving Parametric MOQPs with Parameters in General Locations

7 Conclusion

This paper appears to present the first numerical study on solving parametric MOPs. We showed that the
state-of-the art parametric optimization algorithms allow computation of efficient sets for convex mpMOQPs
in which parameters model unknown or uncertain quantities. mpMOQPs are solved by scalarization which
introduces additional parameters when transforming the original problem into mpQPs. Because the efficient
set for mpMOQPs is a parametrized collection of the efficient sets, the former can be computed by the algorithms
that have been designed for mpQPs as long as they are able to handle multiple parameters and work well on
mpQPs of different types. To offer flexibility with mpQPs, we proposed a generalized weighted-sum scalarization
that reduces to six SOPs of the weighted-sum/epsilon-constraint type that can be applied depending on the
real-life context and available solver.

We compared two LCP-based methods for solving spQPs with linear constraints: the mpLCP method,
a recently developed method to solve mpQPs with linear constraints, and the spLCP method, a method
proposed in the 1990s and never implemented. We anticipated that the latter would be more efficient than
the former due to its special features but discovered otherwise. The mpLCP method, which turned out to
be superior to three other methods in [30], is also superior to the spLCP method in the current MATLAB
environment. Consequently, we conclude that the mpLCP method determines the state-of-the-art in solving
mpMOQPs with linear constraints. Additionally, we experimented with applying the mpAS method to single
objective mpQCQPs. Despite trading accuracy for solution speed, it worked accurately enough that we applied
it to mpMOQPs. The mpAS method cannot find the true Pareto sets as well as the mpLCP method but
is capable of approximating weak Pareto sets in totality and providing tradeoff information that is different
from that offered by the mpLCP method. In the absence of an exact method, the mpAS method turns out to
be an effective solution tool as the only method to approximately solve mpQCQPs resulting from scalarizing
mpMOQPs. Using the elastic net problem in statistics and portfolio optimization, we showed that matching
the two methods with specific scalarizations provides mutually complementary insight into the real-life context
and therefore supports decision making.

Future research can go in different directions. The spLCP method should not be ignored because
software advances in solving systems of polynomial equations might make it attractive in the future. There is a
need to develop algorithms for mpQCQPs since they emerge from useful epsilon-constraint-type scalarizations
of mpMOQPs. The mpAS method, that relies on joint convexity, could be extended biconvexity to allow for
broader applicability. Dealing with nonconvex problems is also important. Dropping the convexity assumption
and making use of available convex relaxations for nonconvex QPs may allow application of the presented
algorithms to nonconvex MOQPs and, consequently, nonconvex mpMOQPs. More generally, since parametric
multiobjective optimization requires methodologies that are customized at the stage of SOP reformulation and
the stage of algorithmic development, it is advisable to design algorithms for specific classes of mpSOPs and
utilize them for mpMOPs.

References

1. Adelgren, N.: https://github.com/Nadelgren/mpLCP_solver (2019). Accessed March 11, 2021
2. Adelgren, N.: Advancing Parametric Optimization: Theory and Solution Methodology for Multiparametric Linear Comple-

mentarity Problems with Parameters in General Locations. SpringerBriefs on Optimization Series (2020)
3. Bednarczuk, E.: Continuity of minimal points with applications to parametric multiple objective optimization. European

Journal of Operational Research 157, 59–67 (2004)
4. Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex programming. Computational Optimiza-

tion and Applications 35(1), 87–108 (2006)
5. Benson, H.: Multiple-objective linear programming with parametric criteria coefficients. Management Science 31, 461–474

(1985)
6. Bitran, G.: Linear multi-objective programs with interval coefficients. Management Science 26, 694–706 (1980)
7. Bonnel, H., Schneider, C.: Post-Pareto analysis and a new algorithm for the optimal parameter tuning of the elastic net.

Journal of Optimization Theory and Applications 183, 993–1027 (2019)

33

https://github.com/Nadelgren/mpLCP_solver

8. Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland Series in System
Science and Engineering. North Holland (1983). URL https://books.google.com/books?id=ZIg-AQAAIAAJ

9. Cottle, R.: The principal pivoting method revisited. Mathematical Programming 48, 369 – 385 (1990). DOI https://doi.
org/10.1007/BF01582264

10. Cottle, R., Guu, S.: Two characterizations of sufficient matrices. Linear Algebra and its Applications 170, 65 – 74
(1992). DOI https://doi.org/10.1016/0024-3795(92)90410-C. URL http://www.sciencedirect.com/science/article/pii/
002437959290410C

11. Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem, 1st edn. Society for Industrial and Applied Mathe-
matics (2009). DOI 10.1137/1.9780898719000. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719000

12. Cottle, R., Pang, J., Venkateswaran, V.: Sufficient matrices and the linear complementarity problem. Linear Algebra
and its Applications 114-115, 231 – 249 (1989). DOI https://doi.org/10.1016/0024-3795(89)90463-1. URL http://www.
sciencedirect.com/science/article/pii/0024379589904631

13. Dellnitz, M., Witting, K.: Computation of robust Pareto points. International Journal of Computing Science and Mathe-
matics 2(3), 243–266 (2009)

14. Den Hertog, D., Roos, C., Terlaky, T.: The linear complementary problem, sufficient matrices and the criss-cross method.
Combinatorial Optimization. NATO ASI Series (Series F: Computer and Systems Sciences) 82, 253–257 (1992). URL
https://doi.org/10.1007/978-3-642-77489-8_18

15. Diamond S. Agrawal, A., Murray, R.: CVXPY. https://www.cvxpy.org/examples/basic/quadratic_program.html (2020).
Accessed March 3, 2021

16. Ehrgott, M.: Multicriteria Optimization. Springer (2005)
17. Ehrgott, M., Greco, S., Figueira, J.: Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd edn. International

Series in Operations Research and Management Science. Springer (2016). URL https://books.google.com/books?id=
xQRhAQAACAAJ

18. El-Banna, A.: A study on parametric multiobjective programming problems without differentiability. Comput. Math. Appl.
26(12), 87–92 (1993)

19. Enkhbat, R., Guddat, J., Chinchuluun, A.: Parametric multiobjective optimization. In: A. Chinchuluun, P. Pardalos,
A. Migdalas, L. Pitsoulis (eds.) Pareto Optimality, Game Theory and Equilibria, Springer Optimization and Its Applica-
tions, vol. 17, pp. 529–538. Springer (2008)

20. Fang, Y., Yang, X.: Smooth representations of optimal solution sets of piecewise linear parametric multiobjective programs.
In: Variational Analysis and Generalized Differentiation in Optimization and Control, Springer Optim. Appl., vol. 47, pp.
163–176. Springer, New York (2010)

21. Galvan, E., Malak, R., Hartl, D., Baur, J.: Performance assessment of a multi-objective parametric optimization algorithm
with application to a multi-physical engineering system. Structural and Multidisciplinary Optimization 58, 489–509 (2018)

22. Geoffrion, A.: Propr efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications
22(3), 618 – 630 (1968). DOI https://doi.org/10.1016/0022-247X(68)90201-1. URL http://www.sciencedirect.com/
science/article/pii/0022247X68902011

23. Guddat, J., Vasquez, F., Tammer, K., Wendler, K.: Multiobjective and Stochastic Optimization Based on Parametric
Optimization, Mathematical Research, vol. 26. Akademie-Verlag, Berlin (1985)

24. Haimes, Y., Lasdon, L., Wismer, D.: On a bicriterion formulation of the problems of integrated system identification
and system optimization. IEEE Transactions on Systems, Man, and Cybernetics SMC-1(3), 296–297 (1971). DOI
10.1109/TSMC.1971.4308298

25. Hartl, D., Galvan, E., Malak, R., Baur, J.: Parameterized design optimization of a magnetohydrodynamic liquid metal
active cooling concept. J. Mech. Des. 138, 031402 (11 pages) (2016)

26. Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-parametric toolbox 3.0. In: 2013 European Control Conference
(ECC), pp. 502–510. IEEE (2013)

27. Hirschberger, M., Qi, Y., Steuer, R.: Large-scale MV efficient frontier computation via a procedure of parametric quadratic
programming. European Journal of Operational Research 204(3), 581–588 (2010). URL https://ideas.repec.org/a/eee/
ejores/v204y2010i3p581-588.html

28. Hirschberger, M., Steuer, R., Utz, S., Wimmer, W., Qi, Y.: Computing the nondominated surface in tri-criterion portfolio
selection. Operational Research 61, 169–183 (2013)

29. Huy, N., Mordukhovich, B., Yao, J.: Coderivatives of frontier and solution maps in parametric multiobjective optimization.
Taiwanese J. Math. 12(8), 2083–2111 (2008)

30. Jayasekara, P., Adelgren, N., Wiecek, M.: On convex multiobjective programs with application to portfolio optimization.
Journal of Multi-Criteria Decision Analysis 27(3-4), 189–202 (2019)

31. Johansen, T.: On multi-parametric nonlinear programming and explicit nonlinear model predictive control. In: Proceedings
of the 41st IEEE Conference on Decision and Control, vol. 3, pp. 2768–2773. IEEE (2002)

32. Klafszky, E., Terlaky, T.: Some generalizations of the criss-cross method for quadratic programming. Optimization 24(1-2),
127–139 (1992). DOI 10.1080/02331939208843783. URL https://doi.org/10.1080/02331939208843783

33. Leverenz, J.: Network target coordination for multiparametric programming. PhD dissertation, Clemson University (2016)
34. Leverenz, J., Xu, M., Wiecek, M.: Multiparametric optimization for multidisciplinary engineering design. Structural and

Multidisciplinary Optimization 54(4), 1–16 (2016)
35. Li, D., Yang, J., Biswal, M.: Quantitative parametric connections between methods for generating noninferior solutions in

multiobjective optimization. European Journal of Operational Research 117, 84 – 99 (1999)
36. Lucchetti, R., Miglierina, E.: Stability for convex vector optimization problems. Optimization 53(5–6), 517–528 (2004)
37. Naccache, P.: Stability in multicriteria optimization. J. Math. Anal. Appl. 68(2), 441–453 (1979)
38. Oberdiecka, R., Pistikopoulos, N.: Multiobjective optimization with convex quadratic cost functions: A multiparametric

programming approach. Computers and Chemical Engineering 85, 36–39 (2016)

34

https://books.google.com/books?id=ZIg-AQAAIAAJ
http://www.sciencedirect.com/science/article/pii/002437959290410C
http://www.sciencedirect.com/science/article/pii/002437959290410C
https://epubs.siam.org/doi/abs/10.1137/1.9780898719000
http://www.sciencedirect.com/science/article/pii/0024379589904631
http://www.sciencedirect.com/science/article/pii/0024379589904631
https://doi.org/10.1007/978-3-642-77489-8_18
https://www.cvxpy.org/examples/basic/quadratic_program.html
https://books.google.com/books?id=xQRhAQAACAAJ
https://books.google.com/books?id=xQRhAQAACAAJ
http://www.sciencedirect.com/science/article/pii/0022247X68902011
http://www.sciencedirect.com/science/article/pii/0022247X68902011
https://ideas.repec.org/a/eee/ejores/v204y2010i3p581-588.html
https://ideas.repec.org/a/eee/ejores/v204y2010i3p581-588.html
https://doi.org/10.1080/02331939208843783

On Solving Parametric MOQPs with Parameters in General Locations

39. Pappas, I., Diangelakis, N., Pistikopoulos, E.: The exact solution of multiparametric quadratically constrained quadratic
programming problems. Journal of Global Optimization pp. 1–27 (2020)

40. Penot, J., Sterna-Karwat, A.: Parametrized multicriteria optimization: Continuity and closedness of optimal multifunctions.
Journal of Mathematical Analysis and Applications 120(1), 150–168 (1986)

41. Penot, J., Sterna-Karwat, A.: Parametrized multicriteria optimization: Order continuity of the marginal multifunctions.
Journal of Mathematical Analysis and Applications 144(1), 1–15 (1989)

42. Pistikopoulos, E., Diangelakis, N., Oberdieck, R.: Multi-parametric Optimization and Control. Operations Research and
Management Science. Wiley (2021)

43. Romanko, O., Ghaffari-Hadigheh, A., Terlaky, T.: Multiobjective optimization via parametric optimization: Models, algo-
rithms, and applications. In: T. Terlaky, F. Curtis (eds.) Modeling and Optimization: Theory and Applications, pp. 77–119.
Springer New York (2012)

44. Ruetsch, G.: Using interval techniques to solve a parametric multi-objective optimization problem. United States Patent
No. 7.664,622 B2 (2010). URL https://patents.google.com/patent/US7664622B2/en

45. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press (1985)
46. Steuer, R., Qi, Y., Hirschberger, M.: Comparative issues in large-scale mean-variance efficient frontier computation. Decision

Support Systems 51, 250–255 (2011)
47. Thuan, L., Luc, D.: On sensitivity in linear multiobjective programming. J. Optim. Theory Appl. 107(3), 615–626 (2000)
48. Väliaho, H.: A procedure for the one-parametric linear complementarity problem. Optimization 29(3), 235–256 (1994).

DOI 10.1080/02331939408843953. URL https://doi.org/10.1080/02331939408843953

49. Wiecek, M., Dranichak, G.: Robust multiobjective optimization for decision making under uncertainty and conflict. In:
J. Smith (ed.) Optimization Challenges in Complex, Networked, and Risky Systems, Tutorials in Operations Research, pp.
84–114. INFORMS (2016)

50. Wiecek, M., Ehrgott, M., Engau, A.: Continuous multiobjective programming. In: S. Greco, M. Ehrgott, J. Figueira (eds.)
Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 738–815. Springer, 2nd edition (2016)

51. Witting, K., Ober-Blöbaum, S., Dellnitz, M.: A variational approach to define robustness for parametric multiobjective
optimization problems. J. Global Optim. 57(2), 331–345 (2013)

52. Witting, K., Schulz, B., Dellnitz, M., Böcker, J., Fröhleke, N.: A new approach for online multiobjective optimization of
mechatronic systems. International Journal of Software Tools and Technology Transfer 10, 223–231 (2008)

53. Wittmann-Hohlbein, M., Pistikopoulos, E.: On the global solution of multi-parametric mixed integer linear programming
problems. Journal of Global Optimization 57(1), 51–73 (2013)

54. Zhou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B
67(2), 301–320 (2005)

A Appendix

A.1 Solving the BOQP in Example (25) with the spLCP method

Below we present the iterations of the spLCP method when solving the BOQP in (25).

Initialization: The full rank factorization of matrix ∆M yields Ψ =

2 0
0 3
0 0

 and κκκ =

[
5
−2

]
. Let B0 = {1, 2, 3}; for the sake of

clarity, we write B0 = {w1, w2, w3}. The initial Tableau TB0
(λ) without the columns associated with the basic variables and

columns h+ 1 to h+ n is given below.

Initial Tableau TB0
(λ)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 -1+10λ -2-4λ 0 -3 2 0

w2 1-6λ 0 -5-9λ -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

Iteration 1: Set λ = 0 in the initial tableau and obtain TB0 (0).

35

https://patents.google.com/patent/US7664622B2/en
https://doi.org/10.1080/02331939408843953

Tableau TB0 (0)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 -1 −2 0 -3 2 0

w2 1 0 -5 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

Since (TB0
(0))1,0 = −1, we have that (TB0

(0)).0 6≥ 0. Thus we apply Phase I. Let r = min{i : (TB0
(0))i,0 < 0, i = 1, 2, 3} = 1.

Then (TB0 (0))r,r̄ = (TB0 (0))1,6 = −2 < 0, and a diagonal pivot is performed.

Tableau TB1 (0)

ggg.0 ggg.1 ggg.7 ggg.8 ggg.9 ggg.10

z1 1/2 -1/2 0 3/2 -1 0

w2 1 0 -5 -5 0 3

w3 27/2 3/2 5 -9/2 3 0

vκ1 6 -1 0 3 -2 0

vκ2 -2 0 -3 0 0 0

The obtained complementary basis B1 = {z1, w2, w3} is feasible for λ = 0 since (TB1 (0))i,0 > 0 for i = 1, 2, 3. Hence Phase I is
terminated. A BFCS is obtained for spLCP (26) for λ = 0w1

w2

w3

 =

 0
1

27/2

 z1z2
z3

 =

1/2
0
0

 , (44)

which yields an efficient solution to BOQP (25) [
x1

x2

]
=

[
1/2
0

]
.

Phase II is initiated. Since (TB1
(0))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3. Algorithm 4 is used to find an

invariancy interval for λ, i.e., the increment τ above 0, in which (44) remains the BFCS. To do so, the polynomial equations,
Pi1(τ) = 0 for each i = 1, 2, 3 and P2(τ) = 0, are solved for their positive roots:

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

For i = 1, det

([
2 + τ−1 0

0 τ−1

])(
1/2−

[
1 0
] [2 + τ−1 0

0 τ−1

]−1 [
6
−2

])
= 0

(
2τ + 1

τ2

)(
1− 10τ

4τ + 2

)
= 0

α1 = τ = 1/10.

For i = 2, det

([
2 + τ−1 0

0 τ−1

])(
1−

[
0 −3

] [2 + τ−1 0
0 τ−1

]−1 [
6
−2

])
= 0

(
2τ + 1

τ2

)
(1− 6τ) = 0

α2 = τ = 1/6.

For i = 3, det

([
2 + τ−1 0

0 τ−1

])(
27/2−

[
−3 0

] [2 + τ−1 0
0 τ−1

]−1 [
6
−2

])
= 0

(
2τ + 1

τ2

)
(2τ + 3) = 0

α3 = τ =∞.

36

On Solving Parametric MOQPs with Parameters in General Locations

Then ρ1 = min{α1, α2, α3} = min{1/10, 1/6,∞} = 1/10. Equation P2(τ) = 0 is solved:

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

det

([
2 + τ−1 0

0 τ−1

])
= 0

(
2τ + 1

τ2

)
= 0

Since the roots of equation P2(τ) = 0 are not positive, set ρ2 = τ = ∞. Find ρ = min{1 − λ, ρ1, ρ2} = min{1, 1/10,∞} =
ρ1 = 1/10, and the invariancy interval for λ for the current BFCS (44) is [0, 1/10]. The starting tableau for the next iteration
is constructed.

Iteration 2: Set λ = 1/10 in the initial tableau and obtain TB0
(1/10).

Tableau TB0
(1/10)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 0 -12/5 0 -3 2 0

w2 2/5 0 -59/10 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0
(1/10))i0 ≥ 0 for i = 1, 2, 3, i.e., the current complementary basis B2 = B0 = {w1, w2, w3} is feasible for

λ = 1/10. A new BFCS is obtained for spLCP (26) for λ = 1/10:w1

w2

w3

 =

 0
2/5
15

 z1z2
z3

 =

0
0
0

 . (45)

which yields an efficient solution to BOQP (25) [
x1

x2

]
=

[
0
0

]
.

Since (TB0
(1/10))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3. Algorithm 4 is used to find an invariancy interval for

λ, i.e., the increment τ above 1/10, in which (45) remains the BFCS. To do so, polynomial equations, Pi1(τ) = 0 for each
i = 1, 2, 3, and P2(τ) = 0, are solved for their positive roots:

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

For i = 1, det

([
τ−1 0

0 τ−1

])(
0−

[
−2 0

] [τ−1 0
0 τ−1

]−1 [
5
−2

])
= 0

(
1

τ2

)
(10τ) = 0

α1 = τ =∞.

For i = 2, det

([
τ−1 0

0 τ−1

])(
2/5−

[
0 −3

] [τ−1 0
0 τ−1

]−1 [
5
−2

])
= 0

(
1

τ2

)
(2/5− 6τ) = 0

α2 = τ = 1/15.

37

For i = 3, det

([
τ−1 0

0 τ−1

])(
15−

[
0 0
] [τ−1 0

0 τ−1

]−1 [
5
−2

])
= 0

(
15

τ2

)
= 0

α3 = τ =∞.

Then ρ1 = min{α1, α2, α3} = min{∞, 1/15,∞} = 1/15. Equation P2(τ) = 0 is solved.

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

det

([
τ−1 0

0 τ−1

])
= 0

(
1

τ2

)
= 0

Set ρ2 = τ = ∞. Find ρ = min{1 − λ, ρ1, ρ2} = min{9/10, 1/15,∞} = ρ1 = 1/15, and the invariancy interval for λ for the
current BFCS (45) is [1/10, (1/10) + (1/15)] = [1/10, 1/6]. The starting tableau for the next iteration is constructed.

Iteration 3: Set λ = 1/6 in the initial tableau and obtain TB0
(1/6).

Tableau TB0 (1/6)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 4/6 -16/6 0 -3 2 0

w2 0 0 -39/6 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0
(1/6))i0 ≥ 0 for i = 1, 2, 3, i.e., the current complementary basis B3 = B0 = {w1, w2, w3} is feasible for

λ = 1/6. A BFCS is obtained for spLCP (26) for λ = 1/6:w1

w2

w3

 =

4/6
0
15

 z1z2
z3

 =

0
0
0

 , (46)

which yields an efficient solution to BOQP (25) [
x1

x2

]
=

[
0
0

]
.

Since (TB0 (1/6))i,0 > 0, the condition Bi0 � 0 holds for all i = 1, 2, 3 Algorithm 4 is used to find an invariancy interval, i.e.,
the increment τ from above 1/6, in which (46) remains the BFCS. To do so, polynomial equations, Pi1(τ) = 0 for each
i = 1, 2, 3 and P2(τ) = 0, are solved for their positive roots.

Pi1(τ) = det
(
− TB(λ)KK + τ−1I

)(
TB(λ)i0 − (−TB(λ)iK)(TB(λ)KK + τ−1I)−1TB(λ)K0

)
= 0.

For i = 1, det

([
τ−1 0

0 τ−1

])(
4/6−

[
−2 0

] [τ−1 0
0 τ−1

]−1 [
5
−2

])
= 0

(
1

τ2

)
(4/6 + 10τ) = 0

α1 = τ =∞.

38

On Solving Parametric MOQPs with Parameters in General Locations

For i = 2, det

([
τ−1 0

0 τ−1

])(
0−

[
0 −3

] [τ−1 0
0 τ−1

]−1 [
5
−2

])
= 0

(
1

τ2

)
(−6τ) = 0

α2 = τ =∞.

For i = 3, det

([
τ−1 0

0 τ−1

])(
15−

[
0 0
] [τ−1 0

0 τ−1

]−1 [
5
−2

])
= 0

(
15

τ2

)
= 0

α3 = τ =∞

Then ρ1 =∞. Equation P2(τ) = 0 is solved.

P2(τ) = det
(
− TB(λ)KK + τ−1I

)
= 0

det

([
τ−1 0

0 τ−1

])
= 0

(
1

τ2

)
= 0

Set ρ2 = τ =∞. Find ρ = min{1−λ, ρ1, ρ2} = min{5/6,∞,∞} = 1−λ = 5/6, and the invariancy interval for λ for the current
BFCS (46) is [1/6, 1]. The starting tableau for the next iteration is constructed.

Iteration 4: Set λ = 1 in the initial tableau and obtain TB0
(1):

Tableau TB0 (1)

ggg.0 ggg.6 ggg.7 ggg.8 ggg.9 ggg.10

w1 9 -6 0 -3 2 0

w2 -5 0 −14 -5 0 3

w3 15 3 5 0 0 0

vκ1 5 -2 0 0 0 0

vκ2 -2 0 -3 0 0 0

The resulting (TB0
(1))2,0 = −5 < 0 implying Bi0 ≺ 0. Therefore the current basis B0 = {w1, w2, w3} is updated using

Algorithm 6. Let r = min{i : (TB0 (1))i,0 < 0, i = 1, 2, 3} = 2. Then (TB0 (1))r,r̄ = (TB0 (0))2,7 = −14 < 0, and a diagonal pivot
is performed.

Tableau TB4 (1)

ggg.0 ggg.6 ggg.2 ggg.8 ggg.9 ggg.10

w1 9 -6 0 -3 2 0

z2 5/14 0 -1/14 5/14 0 -3/14

w3 170/14 3 5 -25/14 0 15/14

vκ1 5 -2 0 0 0 0

vκ2 -11/14 0 -3 15/14 0 -9/14

The resulting (TB2
(1))i0 ≥ 0 for i = 1, 2, 3, i.e., the obtained complementary basis B4 = {w1, z2, w3} is feasible for λ = 1. A

new BFCS is obtained for spLCP (26) for λ = 1w1

w2

w3

 =

 9
0

170/14

 z1z2
z3

 =

 0
5/14

0

 , (47)

39

which yields an efficient solution to BOQP (25) [
x1

x2

]
=

[
0

5/14

]
.

Since the entire parameter space has been examined, the spLCP method terminates.

40

On Solving Parametric MOQPs with Parameters in General Locations

A.2 Solution to the Elastic Net Problem in Example (31)

Table 7: Invariancy regions (I R) and efficient solution functions for TOQP (30) with data (31) solved as (32)
with the mpLCP method.

I R 1 =


λλλ ∈ Λ′ :

100− 100λ2 − 409λ1 ≥ 0

100− 100λ2 − 1007λ1 ≥ 0

100− 100λ2 − 871λ1 ≥ 0

209λ1 − 100λ2 + 100 ≥ 0

807λ1 − 100λ2 + 100 ≥ 0

671λ1 − 100λ2 + 100 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 = 0

x3 = 0

 for λλλ ∈ I R 1

I R 2 =


λλλ ∈ Λ′ :

−15, 623λ2
1 − 13, 936λ1λ2 + 12, 300λ1 − 400λ2

2 + 400λ2 ≥ 0

1, 007λ1 + 100λ2 − 100 ≥ 0

900λ1 + 200λ2 − 2, 642λ1λ2 + 3, 245λ2
1 − 200λ2

2 ≥ 0

209λ1 − 100λ2 − 29, 203λ2
1 + 2, 900λ1λ2 − 2, 900λ1 ≥ 0

1− λ2 − λ1 ≥ 0

−15, 858λ1λ2 − 200λ2 − 17, 200λ1 + 21, 345λ2
1 + 200λ2

2 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 = 1,007λ1+100λ2−100
4,525λ1+100λ2

x3 = 0

 for λλλ ∈ I R 2

I R 3 =


λλλ ∈ Λ′ :

13, 936λ1λ2 − 400λ2 − 12, 300λ1 + 15, 623λ2
1 + 400λ2

2 ≥ 0

1, 900λ1 − 200λ2 + 114λ1λ2 − 1, 791λ2
1 + 200λ2

2 ≥ 0

−1, 200λ1λ2 − 2, 284λ1λ2
2 + 2, 020λ2

1λ2 + 7, 500λ2
1 − 6, 423λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0

−38, 716λ1λ2
2 + 41, 400λ1λ2 − 55, 020λ2

1λ2 + 5, 300λ2
1 − 6, 377λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0



x̂(λλλ) =

x ∈ R3 :

x1 =
13,936λ1λ2−400λ2−12,300λ1+15,623λ2

1+400λ2
2

20,100λ1λ2+6,400λ2
1+400λ2

2

x2 =
1,900λ1−200λ2+114λ1λ2−1,791λ2

1+200λ2
2

10,050λ1λ2+3,200λ2
1+200λ2

2

x3 = 0

 for λλλ ∈ I R 3

I R 4 =


λλλ ∈ Λ′ :

−25, 036λ1λ2
2 + 23, 400λ1λ2 − 82, 622λ2

1λ2 + 44, 700λ2
1 − 51, 879λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

100λ1 − 200λ2 + 1, 914λ1λ2 + 10, 077λ2
1 + 200λ2

2 ≥ 0

−900λ1 − 200λ2 + 2, 642λ1λ2 − 3, 245λ2
1 + 200λ2

2 ≥ 0

−44, 164λ1λ2
2 + 45, 000λ1λ2 − 114, 378λ2

1λ2 + 83, 900λ2
1 − 76, 721λ3

1 + 400λ2
2 − 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



41

x̂(λλλ) =

x ∈ R3 :

x1 = 0

x2 =
100λ1−200λ2+1,914λ1λ2+10,077λ2

1+200λ2
2

17,100λ1λ2+32,150λ2
1+500λ2

2

x3 =
−900λ1−200λ2+2642λ1λ2−3,245λ2

1+200λ2
2

17,100λ1λ2+32,150λ2
1+500λ2

2

 for λλλ ∈ I R 4

I R 5 =


λλλ ∈ Λ′ :

25, 036λ1λ2
2 − 23, 400λ1λ2 + 82, 622λ2

1λ2 − 44, 700λ2
1 + 51, 879λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

4, 000λ1λ2 + 28λ1λ2
2 − 4, 128λ2

1λ2 + 20, 700λ2
1 − 18, 603λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1, 200λ1λ2 + 2, 284λ1λ2
2 − 2, 020λ2

1λ2 − 7, 500λ2
1 + 6, 423λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



x̂(λλλ) =


x ∈ R3 :

x1 =
25,036λ1λ

2
2−23,400λ1λ2+82,622λ2

1λ2−44,700λ2
1+51,879λ3

1−400λ2
2+400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x2 =
4,000λ1λ2+28λ1λ

2
2−4,128λ2

1λ2+20,700λ2
1−18,603λ3

1−400λ2
2+400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x3 =
1,200λ1λ2+2,284λ1λ

2
2−2,020λ2

1λ2−7,500λ2
1+6,423λ3

1−400λ2
2+400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2


for λλλ ∈ I R 5

I R 6 =


λλλ ∈ Λ′ :

35, 036λ1λ2
2 − 33, 400λ1λ2 + 72, 422λ2

1λ2 − 24, 500λ2
1 + 31, 679λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

32, 628λ1λ2
2 − 28, 600λ1λ2 + 46, 472λ2

1λ2 + 2, 700λ2
1 − 603λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

38, 716λ1λ2
2 − 41, 400λ1λ2 + 55, 020λ2

1λ2 − 5, 300λ2
1 + 6, 377λ3

1 − 400λ2
2 + 400λ3

2 ≥ 0

1− λ2 − λ1 ≥ 0



x̂(λλλ) =


x ∈ R3 :

x1 =
35,036λ1λ

2
2−33,400λ1λ2+72,422λ2

1λ2−24,500λ2
1+31,679λ3

1−400λ2
2+400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x2 =
32,628λ1λ

2
2−28,600λ1λ2+46,472λ2

1λ2+2,700λ2
1−603λ3

1−400λ2
2+400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2

x3 =
−38,716λ1λ

2
2+41,400λ1λ2−55,020λ2

1λ2+5,300λ2
1−6,377λ3

1+400λ2
2−400λ3

2

36,200λ1λ
2
2+88,700λ2

1λ2+17,100λ3
1+400λ3

2


for λλλ ∈ I R 6

42

On Solving Parametric MOQPs with Parameters in General Locations

A.3 Solution to the Elastic Net Problem in Example (31) (with α and β)

Table 8: Invariancy regions (I R) and efficient solution functions for TOQP (30) with data (31).

I R 1 =


α, β ≥ 0 :

100β − 309 ≥ 0

100β − 907 ≥ 0

100β − 771 ≥ 0

100β + 309 ≥ 0

100β + 907 ≥ 0

100β + 771 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = 0

x3 = 0

 for (α, β) ∈ I R 1

I R 2 =


α, β ≥ 0 :

−1, 236α+ 12, 300β + 400αβ − 3, 323 ≥ 0

−100β + 907 ≥ 0

900β − 1, 542α+ 200αβ + 4, 145 ≥ 0

1, 236α+ 23, 900β + 400αβ + 3, 323 ≥ 0

1, 542α+ 17, 200β + 200αβ − 4, 145 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = −100β+907
100α+4,525

x3 = 0

 for (α, β) ∈ I R 2

I R 3 =


α, β ≥ 0 :

1, 236α− 12, 300β − 400αβ + 3, 323 ≥ 0

1, 814α+ 1, 900β − 200αβ + 109 ≥ 0

8, 320α+ 7, 500β − 1, 200αβ + 400α2β − 3, 084α2 + 1, 077 ≥ 0

5, 300β − 8, 320α+ 41, 400αβ + 400α2β + 3, 084α2 − 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 1,236α−12,300β−400αβ+3,323
400α2+20,100α+6,400

x2 = 1,814α+1,900β−200αβ+109
200α2+10,050α+3,200

x3 = 0

 for (α, β) ∈ I R 3

I R 4 =


α, β ≥ 0 :

−14, 522α+ 44, 700β + 23, 400αβ + 400α2β − 1, 236α2 − 7, 179 ≥ 0

1, 814α+ 100β − 200αβ + 10, 177 ≥ 0

−900β + 1, 542α− 200αβ − 4, 145 ≥ 0

14, 522α+ 83, 900β + 45, 000αβ + 400α2β + 1, 236α2 + 7, 179 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 0

x2 = 1,814α+100β−200αβ+10,177
200α2+17,100α+32,150

x3 = −900β+1,542α−200αβ−4,145
200α2+17,100α+32,150

 for (α, β) ∈ I R 4

43

I R 5 =

α, β ≥ 0 :

14, 522α− 44, 700β − 23, 400αβ − 400α2β + 1, 236α2 + 7, 179 ≥ 0

20, 572α+ 20, 700β + 4, 000αβ − 400α2β + 3, 628α2 + 2, 097 ≥ 0

−8, 320α− 7, 500β + 1, 200αβ − 400α2β + 3, 084α2 − 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 14,522α−44,700β−23,400αβ−400α2β+1,236α2+7,179
400α3+36,200α2+88,700α+17,100

x2 = 20,572α+20,700β+4,000αβ−400α2β+3,628α2+2,097
400α3+36,200α2+88,700α+17,100

x3 = −8,320α−7,500β+1,200αβ−400α2β+3,084α2−1,077
400α3+36,200α2+88,700α+17,100

 for (α, β) ∈ I R 5

I R 6 =

α, β ≥ 0 :

14, 522α− 24, 500β − 33, 400αβ − 400α2β + 1, 236α2 + 7, 179 ≥ 0

20, 572α+ 2, 700β − 28, 600αβ − 400α2β + 3, 628α2 + 2, 097 ≥ 0

−5, 300β + 8, 320α− 41, 400αβ − 400α2β − 3, 084α2 + 1, 077 ≥ 0



x̂(α, β) =

x ∈ R3 :

x1 = 14,522α−24,500β−33400αβ−400α2β+1236α2+7179
400α3+36,200α2+88,700α+17,100

x2 = 20,572α+2,700β−28,600αβ−400α2β+3,628α2+2,097
400α3+36,200α2+88,700α+17,100

x3 = 5,300β−8,320α+41,400αβ+400α2β+3,084α2−1,077
400α3+36,200α2+88,700α+17,100

 for (α, β) ∈ I R 6

44

On Solving Parametric MOQPs with Parameters in General Locations

A.4 Solution to the Portfolio Problem in Example (37)

Table 9: Invariancy region (I R) and efficient solution functions for Example (37) scalarized with the modified
hybrid method (θ = θnor, ε = εnor, and the parameter space Ω = Θnor × Λ′ ×Enor)

I R 1 =

(θ, λ, ε) ∈ Ω :

−20λ− 737ε− 24θ + 134λε+ 8λθ + 60 ≥ 0

−740λ− 44, 019ε− 808θ + 4, 958λε+ 56λθ − 2, 144εθ + 96λθ2 − 160θ2

+1, 608λεθ + 3, 020 ≥ 0

67ε+ 4θ − 10 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = 0

x2 = 67ε+4θ−10
4θ−10

x3 = −67ε
4θ−10

 for (θ, λ, ε) ∈ I R 1

I R 2 =



(θ, λ, ε) ∈ Ω :

1, 139λ+ 4, 489ε+ 56θ − 2, 412λε− 402λ2ε− 24λ2θ
+60λ2 − 2, 217 ≥ 0

−31, 021ε+ 21, 562λ− 1552θ − 96λ2θ2 + 20, 167λε+ 4, 512λθ
−3, 752εθ + 12, 060λ2ε+ 384λθ2 − 1, 776λ2θ − 3, 938λ2

−352θ2 + 1, 608λ2εθ − 27, 554 ≥ 0

−740λ− 44, 019ε− 808θ + 4, 958λε+ 56λθ − 2, 144εθ + 96λθ2

−160θ2 + 1, 608λεθ + 3, 020 ≥ 0

20, 167ε− 2, 080λ+ 640θ + 13, 936λε+ 592λθ − 2680εθ + 96λθ2

−128θ2 + 1, 608λεθ − 23, 245 ≥ 0

37λ+ 178ε− 20θ − 141λε+ 12λθ + 36εθ − 24λεθ − 151 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = −740λ−44,019ε−808θ+4,958λε+56λθ−2,144εθ+96λθ2−160θ2+1,608λεθ+3,020
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

x2 = 20,167ε−2,080λ+640θ+13,936λε+592λθ−2,680εθ+96λθ2−128θ2+1,608λεθ−23,245
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

x3 = 4,958λ+23,852ε−2,680θ−18,894λε+1,608λθ+4,824εθ−3,216λεθ−20,234
2,138λ−2,848θ+2,256λθ+192λθ2−288θ2−40,459

 for (θ, λ, ε) ∈ I R 2

I R 3 =


(θ, λ, ε) ∈ Ω :

−1, 139λ− 4, 489ε− 56θ + 2, 412λε+ 402λ2ε+ 24λ2θ − 60λ2 + 2, 217 ≥ 0

−15λ2 + 86λ− 6λ3 − 71 ≥ 0

17λ− 31 ≥ 0

19λ− 22 ≥ 0

3λ2 − 7 ≥ 0



x̂(θ, λ, ε) =

x ∈ R3 :

x1 = 17λ−31
36λ+6λ2−67

x2 = 19λ−22
36λ+6λ2−67

x3 = 6λ2−14
36λ+6λ2−67

 for (θ, λ, ε) ∈ I R 3

45

	Introduction
	Problem Statement
	Generalized weighted sum scalarization
	Parametric Quadratic Programs with Linear Constraints
	Parametric Quadratic Programs with Quadratic Constraints
	Applications
	Conclusion
	Appendix

