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The increasing penetration of renewable energy in power systems calls for secure and reliable system opera-

tions under significant uncertainty. To that end, the chance-constrained AC optimal power flow (CC-ACOPF)

problem has been proposed. Most research in the literature of CC-ACOPF focuses on one-sided chance

constraints; however, two-sided chance constraints (TCCs), albeit more complex, provide more accurate for-

mulations as both upper and lower bounds of the chance constraints are enforced simultaneously. In this

paper, we introduce a fully two-sided CC-ACOPF problem (TCC-ACOPF), in which the active/reactive

generation, voltage, and power flow all remain within their upper/lower bounds simultaneously with a pre-

defined probability. Instead of applying Bonferroni approximation or scenario-based approaches, we present

an efficient second-order cone programming (SOCP) approximation of the TCCs under Gaussian Mixture

(GM) distribution via a piecewise linear (PWL) approximation. As compared to the conventional normality

assumption for forecast errors, the GM distribution adds an extra level of accuracy representing the uncer-

tainties. Moreover, we show that our SOCP formulation has adjustable rates of accuracy and its optimal

value enjoys asymptotic convergence properties. Furthermore, an algorithm is proposed to speed up the

solution procedure by optimally selecting the PWL segments. Finally, we demonstrate the effectiveness of

our proposed approaches with both real historical data and synthetic data on the IEEE 118-bus system. We

show that our formulations provide significantly more robust solutions (about 60% reduction in constraint

violation) without additional computational costs, as compared to other state-of-art ACOPF formulations.

Key words : Stochastic programming, two-sided chance constraint, AC optimal power flow, second-order

cone programming, piecewise linear approximation.

1. Introduction

The penetration of renewables such as wind turbines and solar panels is increasing rapidly in

the power system. At the same time, the uncertain output of these non-dispatchable renewable

sources prompts various issues in power system operation. In particular, with a large number of

renewable energy sources, it is well known that the supply-and-demand balance control becomes

very difficult to manage. Indeed, the integration of the uncertain power sources increases the risk
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of supply-and-demand mismatch, which can lead to significant challenges from voltage fluctuations

to overloaded branches and can shut down the entire or parts of the power system (De Rubira and

Hug 2016, Kundur et al. 2004, Filabadi and Azad 2020). Such complexities raise the need for fast

and reliable optimization methods that can both securely and economically schedule the power

system operation. As a solution, the optimal power flow (OPF) problem provides real-time control

measures to support the stability of the system. It guarantees the secure operation of the system

by enforcing constraints such as voltage limits, generation limits, and line capacity.

First introduced by Carpentier (1962) over half a century ago, the OPF problem has gained

great attention due to its importance in power system operations. Due to the complexity of the

equations in power systems, the majority of the OPF research in the literature oversimplifies the

real OPF problem using direct current (DC) and deterministic formulations (Lin et al. 2018). The

DC formulation is an approximation of the actual nonlinear alternating current (AC) power flow

formulas and the deterministic formulation is a rough estimation of the stochastic nature of the

power system. In traditional centralized power systems, such simplifications, albeit imperfect, are

acceptable to run the system without major catastrophic problems. Indeed, the deterministic DC

models are still being used in many commercial and industrial applications (Stott and Alsaç 2012).

However, the large-scale integration of renewable generations in recent years is exposing the

deficiencies of the traditional OPF formulations. In particular, the DC approximation neglects

both network losses and reactive power, which are natural components of a power system network.

Omitting these components would lead to decisions that are not feasible to the realistic AC optimal

power flow (ACOPF) problem. On the other hand, as penetration levels of volatile and intermittent

sources, such as wind and solar power, reach massive fractions of the total supplied power, the risk

of extreme catastrophic outcomes (e.g., power supply interruptions, power mismatch, increased

power losses, and network instability) escalates rapidly. The traditional deterministic models, which

rely on day-ahead or hour-ahead OPF analyses, do not work as well as before because it is more

difficult to predict the renewable power outputs as residential houses are becoming both the load

and generation points. These uncertain forecast errors can lead to insufficient or excess electricity

generation, and if unaccounted for, can result in major reliability issues and cause significant

damage to the system via costly blackouts or other catastrophic events. In fact, major power outages

and the risk for power interruptions increased rapidly in the past few decades (Bloomenergy 2021,

NREL 2021, WirfsBrock 2014) as more renewables are integrated in the system. To account for the

increasing risks caused by uncertainty, stochastic ACOPF problems have been addressed in recent

years (Capitanescu 2016).

An accurate representation of the stochastic ACOPF is achieved using chance-constrained opti-

mization (Bienstock et al. 2014). In particular, the ACOPF problem enforces limits on voltage,
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active power, reactive power, and power flow, and a chance-constrained ACOPF (CC-ACOPF)

enforces those limit constraints with a certain probability. In other words, chance constraints

restrict the feasible region so that the confidence level of the solution is high, and thus reflect the

stochastic nature of the problem. Moreover, in a recent survey of the actual power system operators,

it was determined that using the chance-constrained formulation to choose a predetermined level

of violation for constraints is both an intuitive and transparent way of representing an ACOPF

problem under uncertainty (Roald and Andersson 2017).

While the CC-ACOPF presents an intuitive way to model forecast uncertainty, the nonlinearity of

the AC power flow equations and the probabilistic constraints render the problem computationally

intractable (Nemirovski and Shapiro 2007, Paudyal et al. 2011). To develop a practical method, it

is necessary to consider both an approximation of the AC power flow equations and a pertinent

convex approximation of the chance constraints.

First and foremost, as discussed above, the underlying physical characteristics of the power sys-

tem include nonconvex and nonlinear AC power flow equations; thus, most works in literature

approximate the AC power equations with an imprecise DC model to reduce the complexity (Bien-

stock et al. 2014, Overbye et al. 2004, Vrakopoulou et al. 2013, Xie and Ahmed 2017, Zhang et al.

2016). Modeling the actual AC power flow, on the other hand, allows us to accurately consider

new constraints and chance constraints on reactive power, power angles, and power transmission

capacity. Several different methods for linear approximation of full CC-ACOPF are proposed in

the literature that attempt to represent the output variables as linear combinations of input vari-

ables. For example, Dall’Anese et al. (2017) distinctly models linearized AC power flow equations

around a given voltage profile. Others (Hojjat and Javidi 2015, Zhang and Li 2011) have con-

sidered full linearization of the responses around expected values of the random variables using

linear decision rules. In another effort, Vrakopoulou et al. (2013) uses SDP relaxations for the AC

power equations; however, the resulting formulation cannot provide robust guarantees and it is

computationally expensive. In this study, similar to Fu and McCalley (2001), Roald and Andersson

(2017) and Lubin et al. (2019), we use Taylor expansion to linearize the AC power flow equations

around a predicted operating point. This predicted point is identified by solving the deterministic

ACOPF problem, and our model approximates the impact of uncertainty as a linear function of the

uncertain power injections only around that particular operating point. Hence, it is more accurate

than the other techniques as it linearizes the system around one operating point instead of fully

linearizing the system (Roald and Andersson 2017). This also further allows for the development

of analytical chance-constrained reformulations.

Secondly, to facilitate the development of analytical chance-constrained reformulations, the one-

sided chance constraint (OCC) relaxation is commonly used. In particular, most works in the
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literature of CC-ACOPF treat the physical bounds separately (Dall’Anese et al. 2017, Roald and

Andersson 2017, Lubin et al. 2019), i.e., a single chance constraint is imposed on the upper bound

and another chance constraint is imposed on the lower bound. While using OCCs is convenient

as they can be reformulated and implemented more easily (Baker et al. 2016, Bienstock et al.

2014, Zhang and Li 2011), it is an inexact approximation of the OPF problem. More specifically,

it is known that active power, reactive power, and voltage at each bus, as well as the power flow

at each branch in general, have both lower and upper bound limits. Hence, it is more accurate

to represent each by a two-sided chance constraint (TCC). To the best of our knowledge, Lubin

et al. (2015), Pena-Ordieres et al. (2019), and Xie and Ahmed (2017) are the only known work

treating lower and upper bounds simultaneously. Among them, the distributionally robust results

in Pena-Ordieres et al. (2019), Xie and Ahmed (2017) depend on an inaccurate DC approximation,

and the analytical results in Lubin et al. (2015) only considers a subset of constraints with a TCC

formulation that is limited to a Gaussian assumption.

In fact, many papers in the literature that study closed-form analytical reformulations of CC-

ACOPF simply model the forecast errors through Gaussian distribution (Bienstock et al. 2014,

Roald and Andersson 2017, Lubin et al. 2019, 2015, Li et al. 2017). This Gaussian assumption is

often criticized in the literature as it may lead to further inaccuracies that can cause cascading

shutdowns and power interruptions in the grid. To be more specific, recent statistical analyses of

renewable forecast error distribution have found that the forecast error distribution differs greatly

from the commonly assumed normal distribution (Hodge and Milligan 2011, Lange 2005). In par-

ticular, the large-scale availability of historical data on renewable generation and forecast can be

analyzed to obtain data on renewable forecast errors. This forecast data then can be analyzed to

obtain an estimation of the forecast error distribution. For example, Hodge et al. (2012) studies

historical data to analyze the underlying probability distributions of forecast errors, and it realizes

that forecast error distributions are skewed in many cases. It further shows that the simple Gaus-

sian distribution performs poorly when skewness is present. In view of this, in our research, we

have modeled the forecast error distribution through Gaussian mixture (GM) modeling. With the

GM modeling approach, the forecast error distribution can be modeled as a convex combination

of multiple normal distributions with respective means and variances. Consequently, it not only

encompasses the normal distribution but also can be used to model a continuous distortion of the

latter, such as skewness (Bertholon et al. 2007). In fact, any distribution can be approximated

by a Gaussian mixture distribution since the well-known normal kernel density estimator may be

considered as a particular GM distribution (Dattatreya and Kanal 1990, Reynolds 2009, Zhuang

et al. 1996). Furthermore, GM is stable by convolution and easy to simulate. Hence, employing it



5

helps us develop OPF solutions that are significantly robust against forecast error uncertainties,

and adds a huge deal of accuracy and flexibility to our model.

The resulting two-sided chance-constrained ACOPF (TCC-ACOPF) problem under GM, how-

ever, relies on nonconvex and nonlinear TCCs that need to be convexly approximated. In this

paper, we present a tractable approximation methodology for the TCC-ACOPF to provide an

accurate solution for the problem in a timely manner. We first provide a convex approximation of

the TCC under a GM distribution. Furthermore, we show that our approximation is exact for the

case of simple Gaussian and some special GM distributions, so it generalizes the convexity results

in Lubin et al. (2015). In spite of being convex, this approximation is nonlinear, which makes it

less efficient for large-scale applications. The source of nonlinearity, i.e., the Gaussian cumulative

distribution function (CDF), is then approximated by a piecewise linear (PWL) function. The

resulting final formulation is a series of linear and second-order conic (SOC) constraints, which can

be solved efficiently by many commercial solvers.

The quality of our final SOC approximation of the TCC is adjustable depending on the quality

of the PWL approximation of the Gaussian CDF. Intuitively, the more linear pieces we have, the

more accurate the approximation is. However, a PWL approximation with more pieces also leads

to more constraints in our final SOC formulation, which means higher computational costs. Hence,

it is of our interest to choose an optimal PWL approximation that guarantees a given accuracy

threshold with the minimum number of segments.

Several studies have investigated the idea of finding the optimal PWL fit to a uni-variate func-

tion. For example, Hamann and Chen (1994) finds the optimal locations of segments based on a

root-mean-square error tolerance. Tomek (1974) develops two heuristics to minimize the number

of approximating segments subject to an error limit. More recently, Rebennack and Krasko (2020)

and Kong and Maravelias (2020) developed algorithms that use mixed-integer techniques for find-

ing segments that incite the exact amount of error required; however, their methodology is only

applicable to bounded functions. In this paper, to choose an optimal PWL function, we introduce

an algorithm based on the linear interpolation error. Our methodology relies on the monotonocity

and concavity of the target function, and it avoids introducing mixed-integer variables. Moreover,

it can be generalized to approximate any strictly monotone concave or convex function that is

bounded from at least one side. In our theoretical results, we prove that our algorithm provides the

best fit, and in our numerical results, we compare this algorithm with the uni-distance algorithm

that is commonly used to obtain a PWL approximation. We show that our method can achieve

similar accuracy with significantly fewer linear segments (40% reduction in number of pieces).

Hence, employing our algorithm speeds up the computational time for our SOC approximation of

the TCCs significantly.

In summary, the main contributions of this paper are the following:
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• We present a TCC-ACOPF to model the stochastic ACOPF problem, which models the

forecast error uncertainty more accurately using the GM distribution. In particular, the GM

distribution addresses non-normalities such as skewness in power forecast data, which are not

captured by the common normal distribution.

• We present a convex inner approximation of a TCC on a GM distribution with K components,

and we show that our convex formulation is exact under an easily verifiable condition. As

this intermediate convex formulation may be expensive to solve on large-scale applications,

we introduce a tractable SOC approximation of it based on a PWL approximation of the

standard normal CDF.

• Moreover, the quality of our SOC approximation depends on the quality of the PWL approx-

imation, which can be improved by increasing the number of well-positioned PWL segments.

We prove that our SOC approximation enjoys asymptotic convergence properties. As higher

number of PWL segments lead to more computational costs, we propose an algorithm that

obtains the minimum number of segments (and their optimal positioning) required for a PWL

function to speed up the computation.

• We report computational results with both synthetic and real-world datasets, which show

TCC-ACOPF can be solved efficiently (in a similar timeframe) as compared to the state-of-art

OCC-ACOPF and deterministic ACOPF. Our results show that the TCC-ACOPF approach

significantly improves the robustness and feasibility of solutions.

The remainder of the paper is organized as follows. Section 2 introduces the ACOPF problem and

the TCC-ACOPF problem. Section 3 shows how to reformulate the TCC-ACOPF into a convex

problem and then approximate it by a second-order cone program. An algorithm to speed up the

computation is also proposed in this Section. Section 4 numerically illustrates the strengths of the

proposed model. Section 5 concludes the paper.

2. Mathematical Model

In this section, we introduce mathematical formulations for deterministic ACOPF and TCC-

ACOPF, in the following Subsections 2.1 and 2.2, respectively.

2.1. Deterministic ACOPF

We use B, G, and R to denote the set of all buses, thermal generators, and renewable generators

respectively. For each bus i∈B, we use Gi (resp. Ri) to denote the set of thermal generators (resp.

renewable generators) at this bus, and v̄i (resp. vi) to denote the upper (resp. lower) bound on

nodal voltage magnitude at this bus. For each bus i ∈ B and bus j ∈ B, we use L to denote the

set of tuples (i, j) such that there is a branch between bus i and bus j, and Īij to denote this

branch’s apparent power flow limit. For each thermal generator g ∈ G, we use P̄g (resp. P g) to
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denote its maximum (resp. minimum) active power generation amount, and Q̄g (resp. Q
g
) to denote

its maximum (resp. minimum) reactive power generation amount. To define decision variables, we

let pg (resp. qg) represent the active (resp. reactive) power output of each thermal generator g ∈ G,

epij (resp. eqij) represent the active (resp. reactive) power flow of each tuple (i, j)∈L, and vi (resp.

θi) represent the nodal voltage magnitude (resp. angle) at each bus i ∈ B. Therefore, the ACOPF

model can be described as follows:

min
p,q,v,θ,
ep,eq

∑
g∈G

cg(pg) (1a)

s.t. P g ≤ pg ≤ P̄g, ∀ g ∈ G, (1b)

Q
g
≤ qg ≤ Q̄g, ∀ g ∈ G, (1c)

vi ≤ vi ≤ v̄i, ∀ i∈B, (1d)

(epij)
2 + (eqij)

2 ≤ (Īij)
2, ∀ (i, j)∈L, (1e)

ϕ(p, q, v, θ) = 0, (1f)

θref = 0. (1g)

In the objective function (1a), cg(pg) represents the power production cost of generator g and it

is typically a convex quadratic function (Wood et al. 2013). Constraints (1b) and (1c) restrict

the active and reactive generation amount of each unit, respectively. Constraints (1d) set the

upper/lower bounds of the nodal voltage magnitude at each bus i∈B. The capacity of each branch

is bounded by (1e) and the voltage angle at the reference bus is set to zero by (1g). The set of

active and reactive power balance equations from the Kirchhoff’s current law are enforced by (1f).

Specifically, the active and reactive power flows are functions of the voltage magnitudes v and

voltage angels θ, as illustrated in the following equations:

epij = vivj (Gij cos(θi− θj) +Bij sin(θi− θj)) , ∀(i, j)∈L, (2a)

eqij = vivj (Gij sin(θi− θj)−Bij cos(θi− θj)) , ∀(i, j)∈L, (2b)

where Gij and Bij represent the real and imaginary parts of network admittance for each tuple

(i, j)∈L, respectively. It follows that the power flow balance equations can be represented by the

following equations:

∑
g∈Gi

pg −Dp

i +
∑
g∈Ri

rpg = v2
iGii +

∑
j:(i,j)∈L

epij, ∀i∈B, (3a)∑
g∈Gi

qg −Dq

i +
∑
g∈Ri

rqg =−v2
iBii +

∑
j:(i,j)∈L

eqij, ∀i∈B, (3b)
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which shows that the net active (resp. reactive) power injection at each bus i ∈ B is equal to the

active (resp. reactive) power flow leaving this bus. In (3), Dp

i (resp. Dq

i ) denotes the active (resp.

reactive) power demand at each bus i∈B, Ri denotes the set of renewable generators at each bus

i ∈ B, and rpg (resp. rqg) denotes the forecast active (resp. reactive) power injections from a given

renewable generator g ∈R. Note that since for any (i, j)∈L, if vi, vj, θi, and θj are given, then epij

and eqij are uniquely determined. Thus, ep and eq are not involved in the function ϕ(p, q, v, θ) = 0

as arguments in (1f).

From (3), we can see that there are more variables than equations, which implies that some

variables can be chosen independently and the others will be implicitly determined. In fact, certain

physical structure settings of the power systems enable us to choose such variables independently,

thereby controlling the balance in (3). Specifically, to that end, three bus types are considered

in power system operations, i.e., pv buses, pq buses, and a vθ bus. The pv buses (referred to as

“generation buses” and collected in set Bpv) maintain constant values of active power generation

and voltage magnitude; the pq buses (referred to as “load buses” or “buses without generation or

load” and collected in set Bpq) maintain constant active and reactive power outputs; the vθ bus

(referred to as “reference bus” and collected in singleton Bvθ) is unique and maintains constant

values of the voltage magnitude and angle (Roald 2016, Kothari and Nagrath 2003).

The deterministic ACOPF (1) assumes that the renewable generation outputs (i.e., rpg and rqg

for each i∈B) are known exactly; that is, the forecast values are exact. However, due to the inter-

mittent nature (e.g., wind fluctuates and solar relies on sunny weather), renewable energy actually

creates huge uncertainties to power system operations, thereby requesting advanded decision mak-

ing approaches under uncertainty for the ACOPF problem.

2.2. TCC-ACOPF

To account for the uncertainty due to renewable generation, we introduce a TCC-ACOPF that

ensures a secure system operation under uncertainty. In particular, for a given renewable generator

g, we denote this generator’s uncertain active power generation amount by rpg(ξ) = rpg +ξg, where rpg

denotes the forecast active power generation amount of generator g, ξg denotes a random variable

representing the real-time deviation of this generator from the forecast value rpg , and ξ denotes the

vector of ξg’s with any g ∈ R. Due to such active power generation variation, the power system

has to adjust its responses with respect to other parameters, i.e., rqg(ξ), pg(ξ), qg(ξ), vi(ξ), θi(ξ),

thereby controlling system balance and stability in the real-time operations. Technically, such

responses maintain the ACOPF model (1) to be feasible. To track such adjustments and avoid high

complexities, system operators often adopt a family of affine response control policies for practical

purpose. In this paper the response policies are intuitively selected as follows. First, the reactive
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power output of a renewable generator g changes following the active power output variations

according to

rqg(ξ) = γgr
p
g(ξ), ∀g ∈R, (4)

where γg is a decision variable that depends on operational requirements (Roald 2016, Cabrera-

Tobar et al. 2019). Second, according to the automatic generation control (AGC) policy (Borkowska

1974), we set

pg(ξ) = pg −αgΞ, ∀g ∈ G, (5)

where αg is the participation factor for this generator and Ξ =
∑

g∈R ξg. In our model, αg will be

optimized as a decision variable for any g ∈ G, and it indicates the fraction of the total forecast

error that is compensated by thermal generator g. Third, a distinction between pv, pq, and vθ buses

becomes important for the reactive power balancing and voltage control. Considering common

practice, we assume that the voltage is adjusted at pq buses to keep the reactive power constant

with uncertainty, however, pv and vθ buses can adjust their reactive power to keep the voltage

magnitude constant with uncertainty.

With the uncertainty representation and response policies described above, we then can enforce

the probability that each set of constraints of (1b) - (1e) hold with respect to the distribution of

ξ, leading to the following four sets of chance constraints, respectively:

P
(
P g ≤ pg(ξ)≤ P̄g

)
≥ 1− εp, ∀ g ∈ G, (6a)

P
(
Q
g
≤ qg(ξ)≤ Q̄g

)
≥ 1− εq, ∀ g ∈ G, (6b)

P (vi ≤ vi(ξ)≤ v̄i)≥ 1− εv, ∀ i∈B, (6c)

P
((
epij(ξ)

)2
+
(
eqij(ξ)

)2 ≤
(
Īij
)2
)
≥ 1− εl, ∀ (i, j)∈L. (6d)

Here, P denotes the probability of an event with respect to the distribution of ξ. Constraints

(6a) enforce both the upper and lower bounds on active power generation amount of a given

generator g ∈ G to be held simultaneously with a probability that is no less than 1− εp. Similarly,

the probabilistic bounds on reactive power flow, voltage magnitude, and apparent power flow are

enforced through (6b), (6c), and (6d), with violation probability less than εq, εv, and εl, respectively.

Note that constraints (6d) have quadratic dependency on ξ, while the other constraints have

linear dependency on ξ. Although there is no known tractable reformulation of (6d), it is known

that (6d) is convex when εl < 1/2 and it can be inner approximated by the following constraints

(Lubin et al. 2015):

P
(
|epij(ξ)| ≤ ζ

p

ij

)
≥ 1−β εl, ∀ (i, j)∈L, (7a)

P
(
|eqij(ξ)| ≤ ζ

q

ij

)
≥ 1− (1−β)εl, ∀ (i, j)∈L, (7b)(

ζp

ij

)2
+
(
ζq

ij

)2 ≤
(
Īij
)2
, ∀ (i, j)∈L, (7c)
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where ζp

ij and ζq

ij are auxiliary decision variables and β ∈ (0,1) is a given parameter that is typically

set as 0.5. The resulting constraints (7a) and (7b) are two-sided chance constraints with linear

dependency on ξ and (7c) is a deterministic convex quadratic constraint.

Therefore, the mathematical formulation of TCC-ACOPF can be described as follows:

min
p,q,v,θ,rq

ζp,ζq,α,γ

∑
g∈G

E [cg(pg(ξ))] (8a)

s.t. (6a), (6b), (6c), (7a), (7b), (7c), (1g),

ϕ̂(p(ξ), q(ξ), v(ξ), θ(ξ)|p̂, q̂, v̂, θ̂) = 0, ∀ ξ, (8b)

where E denotes the expectation with respect to the distribution of ξ, objective function (8a)

minimizes the expected total operating cost, and constraints (8b) describe the linearized version

of power balance equations (3). Specifically, constraints (8b) are obtained from a Taylor expansion

around a feasible solution (denoted by (p̂, q̂, v̂, θ̂)) to the deterministic ACOPF model (1) (see

e.g., Roald and Andersson (2017) and Lubin et al. (2019)), and they ensure that the solution of

(8) satisfies the power balance equations under all possible realizations of uncertainty. Here, the

uncertain active and reactive power injections at each bus i ∈ B are calculated as
∑

g∈Gi
pg(ξ)−

Dp

i (ξ)+
∑

g∈Ri
rpg(ξ) and

∑
g∈Gi

qg(ξ)−Dq

i (ξ)+
∑

g∈Ri
rqg(ξ), respectively. Note that, (6a) - (6c) and

(7a)-(7b) represent all the TCCs in our model that are nonlinear and nonconvex in general.

3. Reformulation Techniques for TCC

In this section, we develop a tractable convex formulation of (8) by approximating the two-sided

chance constraints (6a)-(6c) and (7a)-(7b) by a series of linear and SOC constraints. To that end,

we consider a general form of TCC as follows:

P
(
lb ≤ h1(x)>ξ+h0(x)≤ ub

)
≥ 1− ε, (9)

where h1(x) and h0(x) are affine functions of a vector of decision variables x, lb and ub are lower

and upper bounds of the TCC, respectively, and ξ represents a vector of random variables.

In general, TCCs are very difficult to solve. As a result, many existing studies, including Bienstock

et al. (2014), Roald and Andersson (2017), and Dall’Anese et al. (2017), approximate the TCC (9)

by two one-sided chance constraints as follows:

P
(
h1(x)>ξ+h0(x)≤ ub

)
≥ 1− ε̂, (10a)

P
(
h1(x)>ξ+h0(x)≥ lb

)
≥ 1− ε̂. (10b)

When ε̂ = ε, it is clear that (10) provides an outer approximation of (9). When ε̂ = ε/2, (10)

provides an inner approximation for (9), which is known as the Bonferroni approximation of TCCs

(Nemirovski and Shapiro 2007, Hanasusanto et al. 2017).
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The approximation (10) is inexact and often very weak (Xie and Ahmed 2017), and it is accord-

ingly followed by further studies seeking better approximations. For instance, Lubin et al. (2015)

developed an SOC approximation of a TCC, in which ξ follows Gaussian distribution with known

mean and covariance. In many practical settings, however, the Gaussian distribution is known to

lack accuracy in modeling uncertainty, especially when it comes to skewness in the distribution,

which though is commonly present in power system applications (Hodge et al. 2012). In the fol-

lowing Section 3.1, we provide a tight approximation for a general TCC under a GM distribution,

which allows for significantly more accurate modeling of uncertainties. Our approximation has

a controllable degree of accuracy, which is of high value as it provides an additional degree of

flexibility to the model.

3.1. Tight Approximation

In this section, we show that TCC (9) under GM distributions can be inner approximated by a

set of convex constraints. A sufficient condition is also provided under which the approximation

becomes exact. Moreover, the resulting convex constraints can be efficiently approximated by a

set of linear and SOC constraints, which converges to the feasibility set of the true TCC (9). For

notational brevity, we define [n] = {1,2, . . . , n} for any positive integer number n. We make the

following assumption throughout this paper.

Assumption 1. The random variable ξ follows a GM distribution with K components as follows:

ξ ∼
K∑
k=1

wkN (µk, ηkΣ), (11)

where component k ∈ [K] is a Gaussian distribution with mean µk, covariance ηkΣ, and weight

wk > 0 such that
∑K

k=1wk = 1.

We use F to denote the CDF of ξ and accordingly have F (ξ) =
∑K

k=1 wk Fk(ξ), where Fk denotes

the corresponding CDF of each component k ∈ [K]. Note that the covariance of each component is

a multiplication of Σ� 0, which is the covariance matrix base for all components. Moreover, if the

distribution of ξ only consists of one Gaussian distribution, i.e., K = 1, the uncertainty distribution

simplifies to the Gaussian distribution.

Using the GM distribution to represent the uncertainty, the following proposition, in which we

develop a convex reformulation of the TCC, is key to our main results. For ease of exposition, we

define µ′k := h1(x)>µk +h0(x) and Σ′ :=
√
h1(x)>Σh1(x) in the rest of the paper.

Proposition 1. Under Assumption 1, the two-sided chance constraint (9) can be inner approx-

imated by the following convex constraints:

λ

(
K∑
k=1

wk

(
Φ

(
ub−µ′k√
ηkλ

)
+ Φ

(
µ′k− lb√
ηkλ

)))
≥ λ(2− ε), (12a)
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lb ≤ µ′k ≤ ub, ∀ k ∈ [K], (12b)

Σ′ ≤ λ, (12c)

where Φ(·) is the standard normal CDF and λ ∈R is a nonnegative auxiliary variable. Moreover,

if ε≤ (1/2)min{w1, . . . ,wK}, then the approximation is exact; that is, x satisfies (9) if and only if

there exists λ∈R such that (x,λ) satisfies (12).

Proof. First, we show the convexity of constraints (12). Note that Φ(·) is concave in the

restricted domain [0,∞), which is enforced by (12b). Its perspective function Φ̂(z,λ) := λΦ(z/λ)

with domain {(z,λ)|z ≥ 0, λ > 0} is also concave (Boyd et al. 2004). Since affine substitution and

nonnegative weighted summation maintain concavity, (12a) is a convex constraint. It is easy to see

that (12b) and (12c) are affine and SOC constraints, respectively, and thus are convex.

Next, we show that (12) is an inner approximation of the TCC (9). Specifically, under Assumption

1, we have

PF
(
lb ≤ h1(x)>ξ+h0(x)≤ ub

)
=

K∑
k=1

wkPFk
(
lb ≤ h1(x)>ξ+h0(x)≤ ub

)
=

K∑
k=1

wkPFk

(
lb−µ′k√
ηkΣ′

≤
h(x,ξ)−µ′k√

ηkΣ′
≤ ub−µ′k√

ηkΣ′

)

=
K∑
k=1

wk

(
Φ

(
ub−µ′k√
ηkΣ′

)
−Φ

(
lb−µ′k√
ηkΣ′

))

=
K∑
k=1

wk

(
Φ

(
ub−µ′k√
ηkΣ′

)
+ Φ

(
lb−µ′k√
ηkΣ′

))
− 1,

where the last equation holds because Φ(x) = 1−Φ(−x). As a result, (9) can be recast as

K∑
k=1

wk

(
Φ

(
ub−µ′k√
ηkΣ′

)
+ Φ

(
µ′k− lb√
ηkΣ′

))
≥ 2− ε. (13)

Consider (x,λ) that satisfies constraints (12). Because Φ(·) is an increasing function, lb ≤ µ′k ≤ ub,

and λ≥Σ′ > 0, we conclude that

Φ

(
ub−µ′k√
ηkΣ′

)
≥Φ

(
ub−µ′k√
ηkλ

)
and Φ

(
µ′k− lb√
ηkΣ′

)
≥Φ

(
µ′k− lb√
ηkλ

)
,

which, together with (12a), implies (13).

Finally, we show the equivalence between (12) and (13) when ε≤ (1/2)min{w1, . . . ,wK}. Suppose

that x satisfies constraint (13). We claim that for all k ∈ [K],

Φ

(
ub−µ′k√
ηkΣ′

)
≥ 0.5 and Φ

(
µ′k− lb√
ηkΣ′

)
≥ 0.5
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in this case. If not, then there exists some κ∈ [K] such that

Φ

(
ub−µ′κ√
ηκΣ′

)
+ Φ

(
µ′κ− lb√
ηκΣ′

)
< 1.5

because both Φ(ub−µ
′
κ√

ηκΣ′ ) and Φ( µ
′
κ−lb√
ηκΣ′ ) is no larger than 1 and one of them is less than 0.5 by

contradiction. It further follows that,

K∑
k=1

wk

(
Φ

(
ub−µ′k√
ηkΣ′

)
+ Φ

(
µ′k− lb√
ηkΣ′

))
<
∑
k 6=κ

(2wk) + 1.5wκ = 2
K∑
k=1

wk− 0.5wκ = 2− 0.5wκ ≤ 2− ε,

which contradicts to (13). Therefore, for any x satisfying (13), by setting λ = Σ′, we see that

constraints (12) are satisfied by (x,λ). �

Remark 1. The exactness condition in Proposition 1, i.e., ε≤ (1/2)min{w1, . . . ,wK}, is always

satisfied in the case of simple Gaussian (K = 1) if 1 − ε ≥ 0.5. Hence, our proof recovers and

generalizes the convexity results in Lubin et al. (2015).

Remark 2. The exactness condition in Proposition 1 is usually satisfied in practice where

smaller values of ε are of interest. For example, in the case where wk = 1/K for each k ∈ [K],

our reformulation is exact for 1− ε ≥ 1− (1/(2K)). That means a mixture of 4 Gaussians with

1− ε≥ 0.875 is convex and can be exactly reformulated by Proposition 1.

Although (12) consists of convex constraints, it can be computationally expensive to solve for

large-scale applications. In the rest of this section, we discuss how to approximate (12) using linear

and SOC constraints. By Proposition 1, the domain of Φ(·) can be restricted to [0,∞) in our model

(12) without loss of generality, on which Φ(·) is concave. As a result, a PWL inner approximation

of Φ(·) on the interval [0,∞) can be found by a modified linear interpolation. Specifically, given

t ∈ RM+1 with components t0 = 0 and t1, . . . , tM ∈ (0,∞), we define Φ̂t
M(z) = min

m∈[M+1]
{amz+ bm}

the PWL function with M + 1 segments such that{
amtm−1 + bm = Φ(tm−1),

amtm + bm = Φ(tm),
∀m∈ [M ],

aM+1 = 0, and bM+1 = Φ(tM), as illustrated in Figure 1. We further let ∆m := tm − tm−1 for each

m∈ [M ] and E(t) := supz≥0{Φ(z)− Φ̂t
M(z)}. The following lemma about Φ̂t

M(·) is straightforward

due to the concavity of Φ(·), and the proof is omitted.

Lemma 1. For any M ≥ 1 and t ∈RM+1, Φ̂t
M(·) is a concave PWL function and Φ̂t

M(z)≤Φ(z)

for all z ∈ [0,∞). Moreover, E(t)→ 0 for any sequence of t such that ∆m → 0, m ∈ [M ] and

tM →∞.
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Figure 1 An example of PWL fitting of the standard normal CDF (M = 4).

Replacing the standard normal CDF Φ(·) with a PWL function Φ̂t
M(·), we have an inner approx-

imation of (12a):

λ

(∑
k

wk

(
Φ̂t
M

(
ub−µ′k√
ηkλ

)
+ Φ̂t

M

(
µ′k− lb√
ηkλ

)))
≥ λ(2− ε). (14)

Moreover, when E(t)→ 0, constraint (14) converges to (12a) in the following sense.

Proposition 2. Suppose that f(·, ·) is a continuous function of (x,λ). Let (x∗, λ∗) be an optimal

solution of

inf{f(x,λ)|(x,λ) satisfies (12)},

and let (x∗t , λ
∗
t ) be an optimal solution of

inf{f(x,λ)|(x,λ) satisfies (14), (12b), (12c)}.

Then, we have f(x∗t , λ
∗
t )≤ f(x∗, λ∗) for arbitrary t. Moreover, if there exists (x̄, λ̄) such that (12)

are satisfied and (12a) is strictly satisfied, then

lim
E(t)→0

f(x∗t , λ
∗
t ) = f(x∗, λ∗).

The proof of Proposition 2 relies on the following technical lemma.

Lemma 2. Let X ⊆ Rn be a nonempty convex set, Ψ : Rn→ R be a concave function, and f :

Rn→R be a continuous function. Suppose that {Ψδ}δ>0 is a sequence of functions from Rn to R

such that for any y ∈X,

Ψδ(y)≤Ψ(y) and lim
δ→0

Ψδ(y) = Ψ(y).

Let y∗ be an optimal solution of inf{f(y)|Ψ(y) ≥ 0, y ∈X}, and let y∗δ be an optimal solution of

inf{f(y)|Ψδ(y) ≥ 0, y ∈ X}. If there exists ȳ ∈ X such that Ψ(ȳ) > 0, then f(y∗δ ) ≥ f(y∗) for all

δ > 0, and limδ→0 f(y∗δ ) = f(y∗).
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Proof. For any ε > 0, since f(·) is continuous, there exists σ1 ∈ (0,‖ȳ− y∗‖) such that |f(y)−

f(y∗)|< ε whenever ‖y− y∗‖ ≤ σ1. Let

ŷ := σ1

ȳ− y∗

‖ȳ− y∗‖
+ y∗ =

σ1

‖ȳ− y∗‖
ȳ+

(
1− σ1

‖ȳ− y∗‖

)
y∗,

which represents a convex combination of ȳ and y∗. It follows that ‖ŷ− y∗‖ ≤ σ1, implying f(ŷ)−

f(y∗)< ε due to the continuity of f(·), and that ŷ ∈X due to the convexity of X. Moreover, by

the concavity of Ψ(·), we have

Ψ(ŷ)≥ σ1

‖ȳ− y∗‖
Ψ(ȳ) +

(
1− σ1

‖ȳ− y∗‖

)
Ψ(y∗)> 0.

Since limδ→0 Ψδ(ŷ) = Ψ(ŷ)> 0, there exists σ > 0 such that Ψδ(ŷ)> 0 for any δ ∈ (0, σ). It follows

that ŷ is a feasible solution to the minimization problem inf{f(y)|Ψ(y)≥ 0, y ∈X} for any δ ∈ (0, σ),

and accordingly f(y∗δ )≤ f(ŷ). Therefore, we can conclude that f(y∗δ )− f(y∗)≤ f(ŷ)− f(y∗)< ε for

any δ ∈ (0, σ). That is, we have

lim
δ→0

f(y∗δ )≤ f(y∗). (15)

In addition, for any δ > 0, since Ψδ(y)≤Ψ(y) for any y ∈X, we have inf{f(y)|Ψ(y)≥ 0, y ∈X}

is a relaxation of inf{f(y)|Ψδ(y)≥ 0, y ∈X}. Therefore, we conclude that for any δ > 0,

f(y∗δ )− f(y∗)≥ 0. (16)

By combining (15) and (16), we complete the proof. �

Lemma 2 shows that for an optimization problem under the setting mentioned therein, its inner

approximations converge to one formulation that has the same optimal value of the original prob-

lem. We prove this conclusion by creating a sequence of feasible regions (represented based on

{Ψδ}δ>0) contained in the original feasible region (represented based on Ψ), where this sequence

converges to one that produces the optimal value of the original problem. With this lemma, we are

now ready to prove Proposition 2.

Proof of Proposition 2. Let

Ψ(x,λ) := λ

(∑
k

wk

(
Φ

(
ub−µ′k√
ηkλ

)
+ Φ

(
µ′k− lb√
ηkλ

))
+ ε− 2

)
,

and

Ψδ(x,λ) := λ

(∑
k

wk

(
Φ̂t
M

(
ub−µ′k√
ηkλ

)
+ Φ̂t

M

(
µ′k− lb√
ηkλ

))
+ ε− 2

)
,

where t is any set of interpolation points such that E(t) ≤ δ. Also let X :=

{(x,λ)|(x,λ) satisfies (12b), (12c)}. By Proposition 1 and the existence of (x̄, λ̄), we have that X is a
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nonempty convex set, Ψ(·, ·) is a concave function, and there exists (x̄, λ̄)∈X such that Ψ(x̄, λ̄)> 0.

Moreover, by Lemma 1, it is easy to check that

Ψδ(x,λ)≤Ψ(x,λ) and lim
δ→0

Ψδ(x,λ) = Ψ(x,λ)

for all (x,λ)∈X. Therefore, the proof is complete by a direct application of Lemma 2. �

Remark 3. The assumption about the existence of (x̄, λ̄) in Proposition 2 is easy to satisfy in

practice. In particular, if there exists x̄ such that P(lb ≤ h1(x̄)>ξ+h0(x̄)≤ ub)> 1− ε, then under

Assumption 1, (13) is satisfied strictly at x̄, and thus (x̄,
√
h1(x̄)>Σh1(x̄)) satisfies (12) and satisfies

(12a) strictly.

In summary, constraints (14), (12b), and (12c) provide an inner approximation of constraints

(12), and more importantly, they guarantee asymptotic convergence in terms of optimal values. In

the following proposition, we show that the set defined by (14) is in fact polyhedral.

Proposition 3. Consider (x,λ) that satisfies (12b) and (12c). Then, (x,λ) satisfies (14) if and

only if there exists π ∈R2K such that (x,λ,π) satisfies the following linear constraints:{
am(ub−µ′k) + bm

√
ηkλ≥

√
ηkπk,1,

am(µ′k− lb) + bm
√
ηkλ≥

√
ηkπk,2,

∀m∈ [M + 1], ∀ k ∈ [K], (17a)

K∑
k=1

wk(πk,1 +πk,2)≥ λ(2− ε). (17b)

Proof. First, if (x,λ,π) satisfies (17) for some π ∈R2K , then

λΦ̂t
M

(
ub−µ′k√
ηkλ

)
=λ min

m∈[M+1]

{
am

(
ub−µ′k√
ηkλ

)
+ bm

}
=

1
√
ηk

min
m∈[M+1]

{am(ub−µ′k) + bm
√
ηkλ} ≥ πk,1, (18)

where the inequality holds due to (17a). With similar arguments, we have

λΦ̂t
M

(
µ′k− lb√
ηkλ

)
≥ πk,2. (19)

Combining (17b) and (18) - (19), we see that (14) is satisfied by (x,λ).

Next, if (x,λ) satisfies (14), then we can set

πk,1 := Φ̂t
M

(
ub−µ′k√
ηkλ

)
and πk,2 := Φ̂t

M

(
µ′k− lb√
ηkλ

)
for k ∈ [K]. It follows that (x,λ,π) satisfies (17). �

For any continuous function f(·), let f∗ := inf{f(x)|x satisfies (9)} and f∗t :=

inf{f(x)|x satisfies (17), (12b), (12c) with some λ,π}. We summarize our results in this section in

the following theorem.
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Theorem 1. Under Assumption 1, TCC (9) can be inner approximated by linear and SOC

constraints (17), (12b), and (12c). In addition, if ε ≤ (1/2)min{w1, . . . ,wK} and (9) is strictly

satisfied by some x̄, the inner approximation converges to (9) in the sense that f∗t → f∗ as E(t)→ 0.

Using the results from Theorem 1, one can provide an SOCP approximation of the TCC-ACOPF

(8) — each of the TCCs (6a)-(6c) and (7a)-(7b) can be replaced with its counterpart as in (17),

(12b), and (12c).

3.2. Quality of the Approximation

In Section 3.1, we see that the quality of our SOCP approximation highly depends on the maximum

error of the PWL approximation E(t) = maxz∈[0,∞){Φ(z)−Φ̂t
M(z)}. The maximum error depends on

two factors: the number of interpolation pointsM and where the interpolation points are positioned.

Intuitively, more interpolation points (i.e., a larger M) often lead to more accurate approximation.

Nevertheless, a larger M results in more constraints in (17) and thus more computational costs.

In this section, we discuss how to choose the minimum number of interpolation points for a given

maximum error δ. First, we provide the following lemma to help characterize the maximum error

of a linear interpolation.

Lemma 3. Given two interpolation points b > a≥ 0, let Φ̂a,b(·) be the linear interpolation of Φ(·)

such that Φ̂a,b(a) = Φ(a) and Φ̂a,b(b) = Φ(b). The maximum error of the linear interpolation on

[a, b] is

max
z∈[a,b]

{
Φ(z)− Φ̂a,b(z)

}
= Φ

(√
− ln(2πs2)

)
− s
(√
− ln(2πs2)− a

)
−Φ(a), (20)

where s= (Φ(b)−Φ(a))/(b− a). Moreover, define two functions

Ea(b) = Ēb(a) := max
z∈[a,b]

{
Φ(z)− Φ̂a,b(z)

}
.

Then, Ea(·) is an increasing continuous function and Ēb(·) is a decreasing continuous function.

Proof. The linear interpolation of Φ(·) on [a, b] can be expressed as Φ̂a,b(z) = Φ(a) + s(z − a).

Therefore, the maximum error on [a, b], i.e.,

max
z∈[a,b]

{Φ(z)− s(z− a)−Φ(a)} ,

occurs at z∗ ∈ [a, b] such that Φ′(z∗) = s, i.e., (1/
√

2π)e−
(z∗)2

2 = s. Therefore, z∗ =
√
− ln(2πs2), and

the maximum error is Φ(z∗)− s(z∗− a)−Φ(a), which proves (20).

Now consider any 0≤ a< b< c. Since Φ(·) is strictly concave on [0,∞),

Φ(b)−Φ(a)

b− a
>

Φ(c)−Φ(a)

c− a
.
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Therefore, for any z ∈ (a, b],

Φ̂a,b(z) = Φ(a) +
Φ(b)−Φ(a)

b− a
(z− a)>Φ(a) +

Φ(c)−Φ(a)

c− a
(z− a) = Φ̂a,c(z).

As a result,

Ea(b) = max
z∈[a,b]

{
Φ(z)− Φ̂a,b(z)

}
< max

z∈[a,b]

{
Φ(z)− Φ̂a,c(z)

}
≤ max

z∈[a,c]

{
Φ(z)− Φ̂a,c(z)

}
=Ea(c).

That is, Ea(·) is an increasing function. Similarly, we can show that Ēb(·) is decreasing. By (20),

it is clear that both Ea(·) and Ēb(·) are continuous. �

Algorithm 1: Interpolation points positioning

Data: approximation tolerance δ > 0.

Result: the smallest number M and t0, . . . , tM such that Φ(z)− Φ̂t
M(z)≤ δ for all z ≥ 0.

m← 0, t0← 0;

while Φ(tm)< 1− δ do
use line search to find tm+1 ∈ [tm,∞) such that Etm(tm+1) = δ;

m←m+ 1;

M ←m;

Next, based on Lemma 3, we propose Algorithm 1 to calculate the positions of interpolation

points. Given a tolerance δ, Algorithm 1 finds a PWL approximation of Φ(·) with the least inter-

polation points, with theoretical demonstration provided in the following theorem.

Theorem 2. For δ > 0, let t0, . . . , tM be the output of Algorithm 1. Let Φ̂t′
M ′(·) be a linear inter-

polation of Φ(·) defined by interpolation points t′0, . . . , t
′
M ′ with t′0 = 0. If Φ(z)− Φ̂t′

M ′(z)≤ δ for all

z ≥ 0, then M ′ ≥M .

Proof. It suffices to show that t′m ≤ tm for all m ∈ [M ]. We prove the statement by induction

on m. Since Φ(z)− Φ̂t′
M ′(z)≤ δ for all z ≥ 0, we have

Et′m−1
(t′m)≤ δ, ∀m∈ [M ′]. (21)

For m= 1, t′1 ≤ t1 because E0(·) is increasing and E0(t1) = δ. Now suppose that t′m ≤ tm for some

m∈ [M − 1]. If t′m+1 > tm+1, then by the monotonicity of Et′m(·) and Ētm+1
(·), we have

Et′m(t′m+1)>Et′m(tm+1) = Ētm+1
(t′m)≥ Ētm+1

(tm) =Etm(tm+1) = δ,

which contradicts to (21). Therefore, t′m ≤ tm for m∈ [M ]. �

It is worthwhile noting that although our proposed PWL algorithm is tailored for the standard

normal CDF in this paper, it can be generalized to approximate any other strictly monotone convex

or concave functions that are bounded from at least one side.



19

4. Computational Experiments

In this section, we implement the proposed TCC-ACOPF model and approximation from Theorem

1 on a modified IEEE 118-bus test system. First, in Section 4.1, we introduce this test system, the

real historical data that we collect, and the synthetic data that we create. Next, in Section 4.2,

we present computational results to demonstrate the effectiveness of our proposed TCC-ACOPF

model in comparison to the state-of-art methods. All computational experiments were performed

on a PC with an Intel Core i7-7700 CPU and 16 GB RAM. We used JuMP in Julia (Dunning

et al. 2017) to implement all of the models. Ipopt solver (Wächter and Biegler 2006) is used to

solve the nonlinear deterministic ACOPF model (1), and Gurobi 9.0 solver is used for solving the

SOCP formulations.

4.1. Data Setting

Our modified IEEE 118-bus system is based on the original IEEE 118-bus system available online

at MATPOWER (Zimmerman et al. 2010), which includes 118 buses, 54 generators, and 186

transmission lines. The following modifications are made: the value of P̄g for each g ∈ G is reduced

by 30% and the values of Dp

i and Dq

i for each i∈B are increased by 10%. We also include 11 wind

farms, which provide about 33% of the total demand, and their forecast power outputs are listed

in Table 1. In our computational experiments, we set εp = εq = εv = εl in (8) and use a single risk

parameter ε to denote all of them thereafter.

Table 1 Hourly wind power forecast (MW)

Bus i 3 8 11 20 24 26 31 38 43 49 53∑
g∈Ri

rpg(0) 70 147 102 105 113 84 59 250 118 76 72

We consider the renewable power generation forecast error to be uncertain. The real wind power

outputs and the hour-ahead wind power forecasts from Wind Integration National Dataset Toolkit

of National Renewable Energy Laboratory (NREL) were analyzed to obtain historical data on

forecast errors (Draxl et al. 2015). Note that, the wind power forecast errors are then scaled based

on the wind power capacity. In addition to the historical data, we also generate synthetic data

that can reflect skewness in the forecast error distribution. Specifically, three synthetic datasets are

generated and they are referred to as “Left-skewed,” “Normally distributed,” and “Right-skewed”

datasets, respectively, with each of them having a size of N = 20,000 and 11 variates (for the 11

wind farms). For each dataset, we create three groups of data samples (referred to as “Group 1,”

“Group 2,” and “Group 3” data samples) and merge them to create the entire dataset, as specified

in the following:

• First, we randomly create an 11× 11 correlation matrix ρ.
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• Second, we create Group 1 data samples with size of N/2. Each data sample follows a multi-

variate normal distribution N (µ̌1,0.1ρ
>ρ) with µ̌1 ∈ [−0.05,0.05]. That is, each data sample

is around zero.

• Third, we introduce a parameter $ ∈ (0,1), which is used to control the skewness of the

dataset, and create Group 2 data samples with size of (N/2)$. Each data sample follows

a multivariate normal distribution N (µ̌2, ρ
>ρ) with µ̌2 ∈ [−0.15,−0.05]. That is, each data

sample is below zero.

• Fourth, we create Group 3 data samples with size of (N/2)(1−$). Each data sample follows

a multivariate normal distribution N (µ̌3, ρ
>ρ) with µ̌3 ∈ [0.05,0.15]. That is, each data sample

is above zero.

In this paper, we set $ to be 0.7, 0.5, and 0.3 for creating the “Left-skewed,” “Normally dis-

tributed,” and “Right-skewed” datasets, respectively.

For each synthetic dataset created above, we can fit it with a Gaussian distribution (K = 1) and

a GM distribution with two components (K = 2) separately, both of which will be considered in our

computational experiments, thereby obtaining necessary parameters therein. It leads to “Guassian

Fit” and “GM Fit” correspondingly for each dataset. For the Gaussian Fit, the mean vectors and

the covariance matrices are simply calculated from the data. For the GM Fit, the weighted means

and covariance are obtained using the mvnormalmixEM package in R, which fits a multivariate

GM distribution to the data via an expectation-maximization algorithm (Benaglia et al. 2009).

We take a renewable generator as an example to show the fitting results based on the histogram

of the data visually in Figure 2. We can observe that both GM and Gaussian distributions fit

similarly to the “Normally distributed” dataset, but the GM distribution fits much better for the

“Left-skewed” and “Right-skewed” datasets.

Figure 2 Synthetic data alongside Gaussian and GM fits for forecast error of a wind farm.
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4.2. Results and Discussions

We implement our proposed TCC-ACOPF model and approximation approaches by considering

(i) a Gaussian distribution (K = 1) and (ii) a GM distribution with two components (K = 2),

leading to two specific models denoted by TCC-ACOPF-K1 and TCC-ACOPF-K2, respectively.

Our approaches are compared with the one-sided chance-constrained model (denoted by “OCC-

ACOPF”), where Lubin et al. (2019) assumed that the active power, reactive power, and voltage

limits are specified in one-sided chance constraints and the apparent flow constraints (7a) - (7b) are

approximated by a TCC SOC formulation. The computational results are presented in the follow

sequence: (i) comparisons are presented regarding the optimality and violation probability of each

approach, as shown in Section 4.2.1; (ii) sensitivity analyses are performed to verify the accuracy

and computational efficiency of our proposed approach, as shown in Section 4.2.2; and (iii) real case

studies are provided to demonstrate the out-of-sample performance of the solutions generated by

our proposed model and approaches, leading to real-world nonlinear ACOPF analyses in practice,

as shown in Section 4.2.3.

4.2.1. Optimality and Violation Probability First, we compare the computational per-

formance of OCC-ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2 over the synthetic data with

respect to their in-sample optimal values and out-of-sample violation probabilities. We set ε= 0.2

and select 10 optimal segments via Algorithm 1 by setting δ = 0.002 when performing the PWL

approximation. In addition, for each of the three synthetic datasets, we randomly select 5,000 data

samples therein to fit a Gaussian distribution (K = 1) and a GM distribution with two components

(K = 2). We correspondingly solve all the three aforementioned models, recording the solutions

and optimal values (represented by “Opt. Val. ($)” in Table 2).

Based on the solution induced by a model, we further evaluate its quality over the remaining

15,000 data samples by calculating the maximum violation probability (represented by “Vio. Prob.”

in Table 2) across all the nominal constraints in the model. Specifically, given an uncertainty real-

ization and the obtained solution, we check whether each set of the nominal two-sided constraints

on active power, reactive power, voltage, and power flow is violated or not. For example, given an

uncertainty realization ξ̂, an optimal solution (p∗g, α
∗
g), and a generator g ∈ G, we check whether

P g ≤ pg(ξ̂) − α∗g
∑

r∈R ξ̂r ≤ P̄g in (1b) is violated. By running evaluation tests over 15,000 data

samples, we can obtain the corresponding violation probability of this constraint (i.e., the number

of times that this constraint is violated divided by 15,000). We then report the maximum violation

probability across all of such two-sided nominal constraints enforced by chance constraints in each

model, as shown in Table 2.

In terms of the optimal values, we can observe that there is no significant difference (within 5%)

among the three models, irrespective of which dataset is applied. This is mainly because there is no
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Table 2 Performance on Optimality and Violation Probability with ε= 0.2

Datasets OCC-ACOPF TCC-ACOPF-K1 TCC-ACOPF-K2

Right-skewed
Opt. Val. ($) 91289.2 92291.0 93003.1
Vio. Prob. 0.431 0.286 0.178

Normally
distributed

Opt. Val. ($) 89699.4 90081.2 90105.7
Vio. Prob. 0.314 0.184 0.182

Left-skewed
Opt. Val. ($) 89568.1 90225.1 90282.4
Vio. Prob. 0.378 0.233 0.182

direct renewable generation cost in objective function (8a), and accordingly the effect of renewable

generation uncertainty appears to be small on the optimal cost.

In terms of the maximum violation probability, we can observe that as compared to the other

two models, the OCC-ACOPF is subject to a relatively high violation probability. It indicates that

a nominal constraint in ACOPF is likely to fail with a very high probability (e.g., 43.1%), which

is even higher than the pre-set risk control parameter ε= 0.2. In addition, while TCC-ACOPF-K1

clearly performs better than the OCC-ACOPF by ensuring less violation probability, it does not

well account for the data skewness. In fact, the violation probabilities induced by TCC-ACOPF-K1

over the Left-skewed and Right-skewed datasets can be up to 23.3% and 28.6%, respectively, both

of which are higher the pre-set risk control parameter ε= 0.2. Finally, we can observe that TCC-

ACOPF-K2, which considers a GM distribution with two components, significantly outperforms the

above two models by providing the most robust solutions. The corresponding maximum violation

probabilities under various datasets are all less than the pre-set risk control parameter ε= 0.2.

Figure 3 Sensitivity analyses on the maximum violation probability with respect to ε

Next, we use the Right-skewed dataset to perform sensitivity analyses with respect to the value

of ε, with results illustrated in Figures 3 - 5. Figure 3 shows that the the maximum violation

probability guaranteed by the OCC-ACOPF model, which always exceeds the pre-set risk control
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parameter ε, is also very sensitive to ε. It indicates that the solution provided by OCC-ACOPF

is not rosbut and may lead to unstable operations in practice. The blue curve representing TCC-

ACOPF-K1 stays lower than the the red curve representing OCC-ACOPF and accordingly ensure

less violation probability, but it is always above the neutral line representing the value of ε. It

indicates that the solution provided by TCC-ACOPF-K1, albeit further incorporating the TCCs,

is not robust enough. In contrast, the green curve representing TCC-ACOPF-K2 turns out to be

very robust with respect to the risk parameter ε because the maximum violation probability always

stays below the neutral line, regardless of the specific value that ε takes. In short, TCC-ACOPF-

K1 confirms the quality of our proposed TCC approach and TCC-ACOPF-K2 further confirms

the advantages of adopting GM distributions over simple Gaussian distributions, as illustrated in

Figure 2.

Figure 4 Sensitivity analyses on the total cost

with respect to ε

Figure 5 Sensitivity analyses on cost difference

with respect to ε

Furthermore, Figure 4 shows the total cost of the models, while the cost difference between TCC-

ACOPF-K2 and OCC-ACOPF (in blue) and that between TCC-ACOPF-K2 and TCC-ACOPF-K1

(in red) are shown in Figure 5. We observe that as the risk parameter ε increases, (i) the total

costs of all models decrease because each model prepares less electrical generation to hedge against

the decreasing risk; (ii) both cost differences decrease as well due to the same reason. Both cost

differences are relatively small (within 5%) because the renewable generation uncertainty does not

significantly affect the total generation cost, as there is no need to include renewable generation

cost in the objective function of each model. Nevertheless, such uncertainty consideration does

affect the reliability of the obtained solution, as shown in Table 2. In order to gain a solution

with high reliability (e.g., by TCC-ACOPF-K2) under the Right-skewed dataset, TCC-ACOPF-K2
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induces the highest cost when accurately capturing the possibility of electricity shortage, as shown

in Figure 4.

4.2.2. Computational Efficiency In this section, we demonstrate the computational effi-

ciency of our proposed models and other benchmark models using the Right-skewed dataset. We

first report the computational times of the four models, i.e., deterministic ACOPF (1), OCC-

ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2, with respect to different values of ε, as shown

in Table 3. We observe that all four models can be solved very efficiently (within 10 seconds). The

slight computational time increase for TCC-ACOPF-K2 is due to the relatively high number of

linear segments in the PWL approximation, i.e., M = 10.

Table 3 Computational Time (seconds)

Model
ε (%)

20 10 5 1 0.5
ACOPF 1.91 2.89 2.45 2.44 2.18

OCC-ACOPF 1.66 2.66 3.10 2.88 4.10
TCC-ACOPF-K1 2.33 2.22 2.45 2.70 2.82
TCC-ACOPF-K2 4.83 4.55 5.85 5.02 5.31

Next, we focus on the effect of PWL approximation accuracy on the efficiency of solution from

TCC-ACOPF-K2. As we mentioned in Section 3.2, the PWL approximation error is controllable

through the number of interpolation points and their positioning in PWL approximation, and we

proved that Algorithm 1 obtains the minimum number of interpolation points for an approximation

error δ. To numerically demonstrate the significance of using Algorithm 1, we compared it with

the typical uni-distance algorithm used for PWL approximation. Different from Algorithm 1, the

uni-distance algorithm positions t0, . . . , tM such that ti− ti−1 = tj− tj−1 for any i, j ∈ [M ] and i 6= j.

We first report the number of pieces required by each algorithm to reach the approximation error

δ in Table 4. We have the following observations. (i) By increasing the approximation quality, i.e.,

reducing δ, both algorithms rationally require more linear pieces. (ii) For given δ, Algorithm 1

requires significantly fewer linear pieces, as compared to the uni-distance algorithm. For instance,

when δ= 0.01, Algorithm 1 requires 40% fewer pieces than the uni-distance algorithm. The demand

of fewer pieces leads to significant reduction in computational time because fewer constraints are

involved.

Table 4 Algorithm 1 vs. Uni-distance: # Pieces Required

δ 0.05 0.01 0.005 0.002 0.001 0.0005
Algorithm 1 3 6 7 10 14 19
Uni-distance 4 8 11 17 23 33
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We then perform sensitivity analyses to investigate how the approximation error δ affects the

optimal value (represented by “Opt. Val. ($)” in Table 5) and computational time (represented by

“CPU (seconds)” in Table 5) of model TCC-ACOPF-K2. In Table 5, it is clear that more accurate

PWL approximations (i.e., smaller values of δ) lead to higher-quality solutions for TCC-ACOPF-

K2, while such increasing quality comes at the price of longer computational times. In practice,

system operators can choose an appropriate value of δ based on practical considerations to reach

a balance between solution quality and computational time.

Table 5 Effect of PWL Function on the Solution Quality of TCC-ACOPF-K2

δ 0.05 0.01 0.005 0.002 0.001 0.0005
Opt. Val. ($) 98120.3 93263.8 93018.2 93003.3 92956.8 92951.9

CPU (seconds) 3.8 4.1 4.4 4.8 8.9 14.2

4.2.3. Real Case Studies We perform case studies over existing historical data in practice to

further compare the computational performance of four models: deterministic ACOPF (1), OCC-

ACOPF, TCC-ACOPF-K1, and TCC-ACOPF-K2. Specifically, we first take 5,000 data samples

from the real-world dataset for each wind farm location, fit them to the corresponding distribution

of the uncertain forecast error for each model, and obtain certain parameters (e.g., mean, variance,

and weighted means) of the distribution for each model. Given an optimal solution obtained from

each model, denoted by (p∗, q∗, v∗, θ∗, α∗), we then evaluate the out-of-sample performance of this

solution over another 2,000 data samples. Note that, to evaluate the solution of deterministic

ACOPF (1), which does not have the participation factor α as decision variable, we manually set

α∗g = U(g)/
∑

g∈G U(g) for each g ∈ G, where U(g) = max{P̄g − Pg, Pg − P g}, representing unused

capacity.

For each given uncertainty realization ξ̂, the out-of-sample evaluation with respect to a given

solution is performed by solving a re-dispatch model. The re-dispatch model is essentially a modified

nonlinear ACOPF (1), in which the implicit variables are fixed to their optimal values and also

slack variables (spg, s̄
p
g), (s

q
g, s̄

q
g), (s

v
i , s̄

v
i ), and s̄lij are added to measure constraint violations. The

variables are fixed through the response policies. The detailed mathematical formulation for such

re-dispatch is provided as follows:

min
∑

(i,j)∈L

s̄lij +
∑
g∈G

(spg + s̄pg + sqg + s̄qg) +
∑
i∈B

(svi + s̄vi ) (22a)

s.t. P g − spg ≤ pg(ξ̂)≤ P̄g + s̄pg, ∀ g ∈ G, (22b)

Q
g
− sqg ≤ qg(ξ̂)≤ Q̄g + s̄qg, ∀ g ∈ G, (22c)

vi− svi ≤ vi(ξ̂)≤ v̄i + s̄vi , ∀ i∈B, (22d)
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epij(ξ̂)

)2

+
(
eqij(ξ̂)

)2

≤
(
Īij + s̄lij

)2
, ∀ (i, j)∈L, (22e)

(1f), (1g)

pg(ξ̂) = p∗g −α∗
∑
g∈R

ξg ∀ g ∈ G, (22f)

qg(ξ̂) = q∗g , ∀g ∈ Gi, i∈Bpq, (22g)

vi(ξ̂) = v∗i , ∀ i∈Bpv ∪Bvθ. (22h)

The objective function (22a) is to minimize the total amount of violations (i.e., the summation

of all slack variables). Constraints (22b), (22c), (22d), and (22e) measure the violation of two-

sided bounds through slack variables. Constraints (22f), (22g) and (22h) fix the values of the

explicit decision variables at the given optimal solution (p∗, q∗, v∗, θ∗, α∗). For instance, (22f) fixes

the amount of active power generation from each generator according to the AGC power response

policy mentioned in (5).

Table 6 Out-of-Sample Performance over Real Data

Model Ip Iq Iv Il
ACOPF 6.9 (31.2) 93.5 (285.2) 0.6 (1.4) 58.6 (185.3)

OCC-ACOPF 2.1 (13.1) 26.7 (109.1) 0.2 (0.5) 15.5 (56.3)
TCC-ACOPF-K1 0.6 (2.6) 7.2 (33.7) 0.2 (0.4) 8.9 (37.1)
TCC-ACOPF-K2 0.2 (1.8) 6.4 (24.2) 0.1 (0.2) 5.1 (25.3)

If the re-dispatch model leads to an optimal value at zero, i.e., no violation, then the given solu-

tion is feasible to the corresponding given uncertainty realization under the existing dispatchable

resources. Otherwise, i.e., some slack variables take positive values, then the given solution is infea-

sible to the given uncertainty realization. We accordingly introduce four “imbalance metrics” to

measure the violations corresponding to each of (1b) - (1f): Ip =
∑

g∈G(s̄
p
g +spg), Iq =

∑
g∈G(s̄

q
g +sqg),

Iv =
∑

i∈B(s̄vi + svi ), and eij =
∑

ij∈L s̄
l
ij. The resulting results are reported in Table 6, where we

report the average value and standard deviation (i.e., the number within a parentheses) of each

imbalance metric over the 2,000 data samples. From the table, we can observe that while the

chance-constrained models outperform the deterministic one and the TCC-based models outper-

forms the OCC-based one, the TCC-ACOPF-K2 model based on our proposed approaches provides

the smallest values over all of the four metrics. That is, TCC-ACOPF-K2 is exceptionally robust.

Such high reliability demonstrates the significance of our proposed model and approaches, which

consider two-sided chance constraints for the ACOPF problem under uncertainty and include more

distributional information to represent the uncertainty by adopting GM distributions.
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5. Conclusion

As higher levels of renewable electricity penetrate the power system, the uncertainty in the power

system can cause adverse power interruptions, power outages, and network instability. To secure

the smooth operation of the power system, more accurate attention to these uncertainties is nec-

essary. In this paper, we proposed a fully two-sided chance-constrained AC optimal power flow

formulation. This TCC-ACOPF guarantees (with a predefined probability) that both upper and

lower bounds on active and reactive power generations, voltage, and power flows simultaneously

hold under uncertainty. In our formulation and to model the effect of uncertainty, we adapted a

GM distribution to represent the forecast errors. Hence, we address the forecast errors much more

accurately, especially in cases where the data are skewed and the common normality assumption

fails. This novel TCC-ACOPF problem, however, is nonlinear and nonconvex; hence, we proposed

an SOC tractable approximation for it. To do so, we first provide a convex approximation of a

TCC under GM distribution, which is also exact when a sufficient condition is satisfied. The result-

ing convex formulation is nonlinear; hence, it is next efficiently approximated by a set of SOC

constraints using PWL approximation of the CDF function. We proved that the resulting SOC for-

mulation enjoys asymptotic convergence properties. Moreover, the resulting tractable formulation

becomes more accurate if a high number of well-positioned segments construct the PWL function.

On the other hand, a higher number of segments also leads to computational difficulties. Therefore,

to speed up our solution procedure, we also provided an algorithm to optimally select the PWL

segments. A proof of optimality of the algorithm is also included.

In a case study on a modieifed IEEE 118-bus test system, we showed that our TCC-ACOPF

formulations achieve higher quality optimal solutions as compared to their OCC-ACOPF and

deterministic OPF benchmarks. Moreover, it is shown that our formulations are significantly more

robust against uncertainty while being computationally tractable. In particular, we observed that

the utilization of GM distribution with two-sided chance constraints in TCC-ACOPF-K2 leads

to maximum robustness both on synthetic and real historical datasets. We also showed that our

proposed PWL δ−approximation algorithm can successfully speed up our methodology by the

efficient selection of PWL segments, hence, making our methodology appropriate for large-scale

real-world applications.
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