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A B S T R A C T

Supply chains evolve over time: they expand via planned construction and/or corporate mergers and acquisi-
tions, and contract due to required facility closures, partnership terminations, and/or other cost-cutting deci-
sions. In addition, businesses also operate in an uncertain world wherein network and other design decisions
must be made despite the reality of unforeseen future events that can and often do disrupt or damage corporate
supply chains. We present a multi-objective network design model and accompanying optimization-based de-
cision support methodology for supply chain architects. Our methodology helps to evaluate the trade-off be-
tween total network cost minimization and maximizing overall supply chain network connectivity. Decision
makers can evaluate a collection of solutions with different cost and connectivity values using our methodology
and choose the network configuration that best serves the needs of their organization. Though our multi-ob-
jective network design model is applicable for individual companies looking to expand or contract their internal
supply chains, we demonstrate our model's efficacy through the lens of a practically-motivated corporate merger
and acquisition activity.

1. Introduction

Companies around the globe regularly experience unforeseen
events, both internal and external to their organization, that can (and
often do) adversely impact their supply chains. These events, such as
material supply shortages, customer demand changes, and natural
disasters, often result in supply chain network design changes, such as
supply chain expansion via planned construction and/or corporate
mergers and acquisitions, and supply chain contraction due to facility
closures, partnership terminations, and/or other cost-cutting decisions.
In this paper, we present a multi-objective, optimization-based network
design methodology to help supply chain architects improve the ef-
fectiveness of their supply chain networks. Our methodology effectively
evaluates the trade-off between two conflicting objective functions of
interest: minimizing total supply chain costs and maximizing overall
supply chain network connectivity.

A clear application of network design arises in building an effective
supply chain. Traditionally, this line of research has focused on cost-
efficient designs; however, increased globalization and diminishing
profit margins (Christopher and Holweg, 2011), among other factors,

are driving modern supply chains to focus on consistently and quickly
providing consumers with quality products. This, in turn, has resulted
in a recent research trend of considering non-cost-related metrics in
supply chain design (Brewer and Speh, 2000; Bullinger et al., 2002;
Gunasekaran et al., 2004; Gunasekaran et al., 2001; Kleijnen and Smits,
2003; Lai et al., 2002; Schmitt and Singh, 2012).

Specifically, many researchers are now focused on designing supply
chains that can effectively operate in the presence of external (e.g.,
supply shortages or demand fluctuations) and/or internal disruptions
(e.g., a strike at a facility). This is becoming increasingly necessary, as a
relatively small disruption can have a significant impact on the overall
performance of the supply chain (Chopra and Sodhi, 2004). The lit-
erature on managing risk in supply chains is vast. As a starting point, we
refer the reader to (Fahimnia et al., 2015; Heckmann et al., 2015; Ho
et al., 2015; Snyder et al., 2016) as they are excellent review papers on
the subject area and can provide for a broader background on this
subject.

A supply chain is termed robust when it can withstand the adverse
impacts of a disruption (Klibi et al., 2010; Tang, 2006). Further, supply
chains capable of recovering quickly from disruptions are commonly
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characterized as being resilient (Bhamra et al., 2011; Christopher and
Peck, 2004; Ponomarov and Holcomb, 2009; Ratick et al., 2008), al-
though these two terms are oftentimes used interchangeably. In their
2010 review, Klibi et al. (2010) point both to supplier and shipping
option redundancy as typical features of robust supply chains. Carvalho
et al. (2012) show via simulation how the existence of these features
can effectively mitigate disruptions. Further, Tang (2006), in citing
both natural disasters and business structure-related issues as sources of
potential disruption, confirms the desirability of these features and
suggests that multiple transportation modes are also desirable to pro-
mote supply chain robustness. Kamalahmadi and Mellat-Parast (2017)
analyze how inventory and supplier redundancy can increase a supply
chain's resilience. Researchers have examined specific strategies for
improving supply chain robustness and/or resilience by mitigating
disruption risks in agricultural (Behzadi et al., 2017; Vlajic et al., 2012),
automotive (Simchi-Levi et al., 2015; Thun and Hoenig, 2011), retail
(Oke and Gopalakrishnan, 2009), medical (Fahimnia et al., 2017),
electronics manufacturing (Aalaei and Davoudpour, 2017), and petro-
chemical (Vugrin et al., 2011) industries, amongst others.

Supply chain resilience has been, and continues to be, studied from
several viewpoints in the literature (see, e.g., (Azevedo et al., 2008;
Iakovou et al., 2007; Kim et al., 2015; Rice and Caniato, 2003)). Ratick
et al. (2008) took a geographic view of supply chain resilience when
determining the locations of backup facilities. Looking to diminish the
impact of potential natural disasters, the authors suggest that a greater
distance between facilities would lessen the impact if an area were to be
hit by an earthquake, hurricane, or similar phenomenon. Their opti-
mization model utilizes a set covering technique in minimizing the
number of facilities needed to cover an area adequately. Similarly,
Craighead et al. (2007) assert that the severity of supply chain dis-
ruptions can be mitigated by appropriate design characteristics, in-
cluding network density, network complexity, and the node criticality
of the network. Their work is extended by Falasca et al. (2008) and
Adenso-Diaz et al. (2012) who quantify the relationships between de-
sign characteristics and the associated resiliency of the resulting supply
chain. Networks developed with different objectives are submitted to
simulation scenarios in order to determine the measure of resiliency
produced by varying approaches to design.

Given the complexities associated with designing an effective supply
chain, “supply chain design” optimization models have been developed
for the purpose of recommending a design on the basis of some criteria.
In his summary review, Shen (2007) presents several variations of the
general multi-echelon supply chain design problem. These problems
can include intricacies such as inventory positioning, routing decisions,
make-versus-buy decisions, and quality issues, and can even be ex-
tended to multiple commodities. Capacity levels are often assumed to
be either infinite or static, although Amiri (2006) addresses the case
where multiple choices of capacities are available for storage at dis-
tribution centers within a supply chain. Melo et al. (2009) and Hinojosa
et al. (2008) both allow for facilities to both open and close within the
scope of their multi-period network models. Reliability metrics have
been developed (Miao et al., 2009; Thomas, 2002) and applied within
the context of mathematical optimization (Berman et al., 2009; Cardoso
et al., 2015; Cui et al., 2010; Daskin et al., 2005; Meena and Sarmah,
2013; Sawik, 2013; Snyder and Daskin, 2005, 2007) to design disrup-
tion-tolerant supply chains.

One commonality among these supply chain design models is their
focus on a single objective, whereas our model considers two: a network
connectivity objective (which serves to facilitate robust solutions) and a
cost objective. Network connectivity is, on its own, well-studied within
the context of network design. The survivable network design problem, as
summarized in the survey paper (Kerivin and Mahjoub, 2005a), seeks to
design a minimum cost network that ensures each pair of nodes is
connected by a certain number of arc-disjoint paths. Variants of this
problem have received significant attention from the optimization
community (Bienstock and Muratore, 2000; Kerivin and Mahjoub,

2005b; Magnanti and Raghavan, 2005) over the last few decades. To
our knowledge, however, there is no existing research that examines
the tradeoff between network connectivity with both strategic and
operational costs.

Our contributions are as follows: We model, for the first time in the
literature, the problem of supply chain network design under cost and
network connectivity objectives. We formulate a novel deterministic
multi-objective optimization model to construct a minimum cost net-
work that hedges against disruption, providing decision makers the
flexibility to prioritize network resiliency over price, or vice versa.
From an application perspective, we implement the model by ex-
amining the post-acquisition, physical reorganization of supply chains,
a topic that has received little attention in the literature, by applying
the model to data representing the scenario in which one food pro-
cessing company is considering redesigning their supply chain after
acquiring another company's assets. The remainder of the paper is or-
ganized as follows: We define our model and solution approach in the
following section, followed by (in Section 3) an illustrative example and
(in Section 4) a case study that applies our model to a problem instance
constructed utilizing data from a multi-billion dollar food processing
company. Section 5 concludes.

2. Deterministic optimization model

The proposed model designs a multi-commodity supply chain net-
work by optimizing with respect to two objectives: cost and demand-
weighted connectivity. Specifically, the model determines (i) produc-
tion capacities for each commodity's supply nodes, (ii) flow capacities
for each arc in the network, and (iii) an operational plan that de-
termines production quantities and locations as well as flow routing for
each commodity. Costs are associated with both the network design
decisions (expanding production and flow capacities) and the opera-
tional-level production quantity and flow-routing decisions. Decisions
(i) and (ii), respectively, can be specified to incorporate opening new
(or closing existing) production facilities or distribution channels. These
decisions yield the supply chain network's topology, which in turn de-
termines each commodity's vulnerability to disruptions. In order to
incorporate vulnerability into the model, we optimize with respect to
demand-weighted connectivity—that is, the sum (weighted by each
commodity's demand) of the minimum number of facility disruptions/
closures that would be required to disconnect a commodity's demand
node from all of its supply nodes. By using a multi-objective approach,
we can generate the tradeoff curve between the two competing objec-
tives, enabling decision makers the flexibility of choosing a Pareto
optimal solution based upon their preferences.

2.1. Notation and model formulation

Consider a directed network =G N E( , ) with commodity set P. The
node set N contains the subsets Dp and ⊆S N D\p p, which are the de-
mand nodes and supply nodes of product p, respectively. Let iRS( ) de-
note the set of all nodes with outgoing arcs ending at node i (i.e.,

= ∈ ∈i j N j i ERS( ) { ( , ) }), and let iFS( ) denote the set of all nodes with
incoming arcs emanating from node i (i.e., = ∈ ∈i j N i j EFS( ) { ( , ) }).

Network design decisions are incorporated for each product/supply
pair via the incorporation of binary decision variable zip, which equals
1 if the production capacity for product ∈p P at node ∈i Sp is set to a
pre-defined high level, >+r 0ip ; otherwise, =z 0ip , indicating the pro-
duction capacity is set to −rip (where <− +r rip ip). We refer to −rip as the low
level. Thus, the production capacity at node i is discrete and can be
either −rip or +rip . If =z 1ip , a cost of gip is incurred. Note that this cost can
be interpreted as either (i) an additional investment required to in-
crease the production capacity from its current level, −rip , to

+rip or (ii)
savings realized via decreasing the production capacity from its current
level +rip , to

−rip . Thus, via appropriately defining −rip ,
+rip , and gip, the model

can allow for the possibility of expanding or reducing an existing
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production operation. Likewise, by defining =−r 0ip , we incorporate the
possibility of adding a new (or canceling an existing) production op-
eration.

In similar fashion to the node-level design decisions described
above, binary decision variables yij are incorporated to model whether
the flow capacity of arc ∈i j E( , ) is set to (the high level) +uij or (the low
level) −uij , where ≤ <− +u u0 ij ij . Hence, the flow capacity of arc i j( , ) is
discrete and can be either −uij or +uij . If the capacity of arc ∈i j E( , ) is set
to the high level, a cost of fij is incurred. For simplicity of exposition, we
have not introduced specific notation to impose flow capacities (and
associated network design decisions) on the nodes; however, this can be
incorporated within the stated model via a well-known node-splitting
transformation, as described in (Ahuja et al., 1993).

Associated with each assignment of binary values to the z- and y-
variables is a network topology: Let

≡ ∈ + − >− + −S z i S r r r z( ) { : ( ) 0}p p ip ip ip ip denote the nodes that have posi-
tive production capacity for product ∈p P, and let

≡ ∈ + − >− + −E y i j E u u u y( ) {( , ) : ( ) 0}ij ij ij ij denote the set of arcs with
positive capacity. A path associated with commodity ∈p P and demand
node ∈k Dp is defined as a sequence of nodes =i{ }t t

T
0 such that ∈i S z( )p0 ;

∈ ∀ = …−i i E y t T( , ) ( ), 1, ,t t1 ; and =i kT . A set of paths associated with
commodity ∈p P demand node ∈k Dp is said to be node-disjoint pro-
vided that each node in N k\{ } is included in at most one path in the set.
(Note: This includes the restriction that node-disjoint paths corre-
sponding to a demand node ∈k Dp associated with a product ∈p P
must all begin at different supply nodes in S z( )p .)

Objective function values are represented with variables C and V,
which respectively correspond to cost and connectivity. The con-
nectivity objective is motivated by the desire to encourage reliable
service to demand nodes via ensuring that demand nodes can be ser-
viced via multiple node-disjoint paths originating from unique sup-
pliers; thus, if we build k node-disjoint paths into a particular demand
node, we have ensured that (at least some) service can be provided to
that demand node even if as many as −k 1 nodes in the network fail. In
the mathematical model defined below, we evaluate connectivity at the
node/product level; thus, vip will denote the number of paths into de-
mand node ∈i Dp that originate from some supply node of product

∈p P . In total, there are ∑ ∈ D| |p P p v-variables, which is upper-bounded
by N P because ≤D Np for all ∈p P; however, appropriately re-
lating each vkp-value to the values of y and z will require E new flow
variables used to assess the number of node-disjoint paths associated
with each product ∈p P and demand node ∈k Dp. In what follows,

these ⎜ ⎟
⎛
⎝

∑ ⎞
⎠

∈E D| | | |p P p flow variables are denoted by ′x .

We now extend the node/product-level definition of connectivity
into a single measure for the entire network. We could, in the spirit of
the pioneering works on network connectivity (e.g., Even and Tarjan
(1975) and Even (1975)), derive a network-level connectivity measure
as ≡ ∈ ∈V vmin { }p P i D ip, p . In our discussion, we will refer to this network
connectivity measure as minimum node connectivity (MNC). We found
MNC to be inadequate for our application because it disregards the
actual quantities dip of product ∈p P demanded at each node ∈i P. To
illustrate, Fig. 1 depicts a single-product network (i.e., with =P {1}) in
which nodes ′′ ′′ ≡S{1 , 2 }( )1 supply product 1, nodes ′ ′{1 , 2 } serve as
transshipment nodes, and nodes ≡D{1,2,3,4,5}( )1 demand product 1 ac-
cording to the dip-values given on the right side of the figure. In this
case, = ∀ = …v i2, 1, ,4i1 because ′′1 - ′1 -i and ′′2 - ′2 -i form node-disjoint
paths for each such i; however =v 1i5 in this example because all paths
from = ′′ ′′S {1 , 2 }1 to 5 pass through node ′1 . The MNC for this example
is =v v v v vmin{ , , , , } 111 21 31 41 51 even though four of the five demand
nodes, comprising = ∑ = d60( )i i1

4
1 of the = ∑ = d61( )i i1

5
1 units of demand,

are connected to supply nodes by two disjoint paths.
This example can easily be extended (e.g., to 20,000 demand nodes

of which 19,999 are twice-connected and the remaining node only
once-connected) to demonstrate that MNC encourages network designs
that provide equitable service to all demand nodes even if it means

forgoing the opportunity to improve service to the highest-demanding
nodes. Given that supply chain networks may have thousands of de-
mand nodes in practice, and the quantities demanded may be highly
variable across these nodes, we opted instead to measure network
connectivity as ≡ ∑ ∑∈ ∈V d vp P i D ip ipp

. This connectivity measure, which
we refer to as demand-weighted connectivity (DWC), encourages network
designs that provide the most reliable service to the highest-demanding
nodes. To illustrate, the DWC for the network in Fig. 1 is
∑ = + + + + == d v 2(10 20 5 25) 1(1) 121i i i1

5
1 1 . Note that the relative

additional reward that could be obtained by improving vi5 from 1 to 2 is
small for DWC (which improves from 121 to 122) as compared to MNC
(which improves from 1 to 2).

Given the above definitions, our model optimizes the supply chain
network by minimizing cost (due to both network design expenses and
commodity flow) and maximizing DWC. The cost to flow one unit of
commodity p along arc i j( , ) is represented by parameter bijp, and cip
represents the cost to produce one unit of product p at supply node i.
The amount of product p demanded at node i is represented by para-
meter dip. Sourcing decisions are captured by the variable wip, identi-
fying the amount of product p produced at node i. Variables xijp re-
present the flow of product p on arc i j( , ). Variables ′x ijkp indicate
whether ′ =x( 1)ijkp or not ′ =x( 0)ijkp arc ∈i j E( , ) is contained in one of
the node-disjoint paths used to evaluate the connectivity associated
with node/product pair ∈p P, ∈i Sp. A summary of the notation is
provided below.

SETS:
N Set of all nodes in G
E Set of all arcs in G
P Set of all commodities
Dp, Sp Set of nodes that demand, supply product ∈p P

iFS( ) Set of all nodes leading out from node i
iRS( ) Set of all nodes with arcs ending at node i

NETWORK DESIGN VARIABLES:
zip Indicates whether production capacity of commodity

∈p P is high ( =z 1ip ) or low (= 0) at node ∈i N
yij Indicates whether flow capacity of arc i j( , ) is high

( =y 1ij ) or low (= 0)

NETWORK OPERATION VARIABLES:
wip Amount of product ∈p P produced at node ∈i N
xijp Flow of product ∈p P on arc ∈i j E( , )

Fig. 1. Illustration of connectivity measures.
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NETWORK CONNECTIVITY VARIABLES:
′x ijkp Indicates whether arc ∈i j E( , ) is on a node-disjoint path

from some supply node of commodity ∈p P (i.e., ∈s Sp)
to demand node ∈k Dp

vkp Number of node-disjoint paths to demand node ∈k Dp

associated with commodity ∈p P

PARAMETERS:
dip Demand for commodity ∈p P at node ∈i Dp

bijp Cost per unit flow of commodity ∈p P on arc ∈i j E( , )
cip Cost per unit of commodity ∈p P produced at node ∈i N

+ −u u,ij ij Flow capacity of arc ∈i j E( , ) at the high level, low level
+ −r r,ip ip Production capacity for commodity ∈p P at node ∈i N

at the high level, low level
fij Cost incurred if flow capacity of arc i j( , ) is at the high

level
gip Cost incurred if production capacity of commodity ∈p P

at node ∈i N is at the high level

Thus, we optimize the objectives

∑ ∑=
∈ ∈

V d vmax ,
p P k D

kp kp
p

(1)

∑ ∑ ∑ ∑= + +
⎛

⎝
⎜ +

⎞

⎠
⎟

∈ ∈ ∈ ∈

C c w g z f y b xmin ( ) ,
p P i N

ip ip ip ip
i j E

ij ij
p P

ijp ijp
( , )

(2)

subject to the constraints

∑ ∑+ = + ∀ ∈ ∈
∈ ∈

x w x d p P i N, , ,
j i

jip ip
j i

ijp ip
RS( ) FS( )

(3)

≤ + − ∀ ∈ ∈− + −w r r r z p P i N( ) , , ,ip ip ip ip ip (4)

∑ ≤ + − ∀ ∈
∈

− + −x u u u y i j E( ) , ( , ) ,
p P

ijp ij ij ij ij (5)

�′ ≤ − − ∀ ∈ ∈ ∈=−x y p P k D i j E1 (1 ), , , ( , ) ,ijkp u ij p{ 0}ij (6)

�∑ ′ ≤ − − ∀ ∈ ∈ ∈
∈

=−x z p P k D i S1 (1 ), , , ,
j i

ijkp r ip p p
FS( )

{ 0}ip (7)

∑ ′ ≤ ∀ ∈ ∈ ∈ ∪
∈

x p P k D i N S k1, , , \ ( { }),
j i

ijkp p p
FS( )

(8)

∑ ∑′ − ′ = ∀ ∈ ∈ ∈ ∪
∈ ∈

x x p P k D i N S k0, , , \ ( { }),
j i

ijkp
j i

jikp p p
FS( ) RS( )

(9)

∑ ′ = ∀ ∈ ∈
∈

x v p P k D, , ,
i k

ikkp kp p
RS( )

(10)

≥ ∀ ∈ ∈x p P i j E0, , ( , ) ,ijp (11)

≥ ∀ ∈ ∈w p P i N0, , ,ip (12)

∈ ∀ ∈y i j E{0,1}, ( , ) ,ij (13)

∈ ∀ ∈ ∈z i N p P{0,1}, , ,ip (14)

′ ≥ ∀ ∈ ∈ ∈x p P k D i j E0, , , ( , ) ,ijkp p (15)

≥ ∀ ∈ ∈v p P k D0, , .kp p (16)

Objective (1) maximizes the DWC of the supply chain, and Objective (2)
minimizes the total cost. Constraints (3) ensure flow balance and ef-
fectively require that all demand of each product is satisfied, while
constraints (4) and (5) respectively enforce production capacity and
flow capacity restrictions. Constraint sets (6)–(8) ensure proper use of
the connectivity network over all nodes by enforcing the definition of

node-disjoint paths. In particular, constraint set (6) limits the number of
times an arc can be part of a node-disjoint path for shipping product

∈p P to demand point ∈k Dp to be at most one as long as the arc has
positive flow capacity, and zero otherwise. For a given product ∈p P
and a demand node ∈k Dp, the constraint set (7) restricts the total
number of node-disjoint paths beginning at a specific supplier to be at
most one if the supplier's production is positive, and zero otherwise.
Constraint set (8) enforces that there is at most one node-disjoint path,
associated with demand point ∈k Dp for product ∈p P, that passes
through any transshipment node ∈ ∪i N S k\( { })p . Conservation of flow
for the connectivity network is ensured by constraints (9), while con-
straints (10) set the total number of node-disjoint paths between sup-
pliers and a demand point ∈k Dp for a product ∈p P by adding the
number arcs entering node k that are part of a node-disjoint path for
that demand point and product pair. Non-negativity and binary speci-
fications for all variables are covered by constraints (11)–(16). When
the binary variables in Model (1)–(16) are fixed, the problem separates
by objective. The problem in the ′x -variables is a minimum cost flow
problem with integer right-hand-sides. Such a problem is known to
possess an integer optimal solution (see, e.g., Bazaraa et al. (2004))
even when integrality constraints are not imposed explicitly.

2.2. Solution method

Due to our use of multiple objective functions, there is no one “best”
solution that can be offered. As such, the goal is to present efficient
solutions, wherein any improvement in one objective function value is
met with a decrement in another objective function value. This “tra-
deoff” between competing objective function values is characterized by
the Pareto curve, or efficient frontier. Many methodologies exist in the
literature for determining the Pareto curve of a given multiobjective
program. Ehrgott (2005) discusses various scalarization and non-
scalarization techniques for solving these types of problems. One of the
most well known strategies is the weighted-sum method, which can
produce the entirety of the efficient frontier only when all of the effi-
cient frontier's points are boundary points of the efficient frontier's
convex envelope. We have opted to use the ε-constraint method, which
generates the entire frontier even when this condition does not hold, as
is frequently the case for integer-constrained problems. Although there
are other methods that can be used to generate or approximate the
efficient frontier (e.g., hybrid of the weighted-sum method and the ε-
constraint method (Ehrgott, 2005), the elastic-constraint method
(Ehrgott and Ryan, 2002), or Benson's method (Benson, 1978)), we
have not attempted to identify a “most efficient” solution method as
part of this research.

In order to solve our nonconvex multiobjective mixed-integer linear
program, the ε-constraint method iteratively solves a single objective
problem (in our case, using cost as the objective) and constraining the
other objective(s). The ε-constraint method produces all of the efficient
solutions (Olagundoye, 1971), including the weakly efficient solutions, as
long as ε is chosen appropriately. Due to the discrete nature of our
second objective, DWC, we chose to express that objective function
with ε-constraints. Moreover, we introduce a small weight >α 0 for
DWC in the objective function in order to force the ′x ijkp-variables to-
wards their upper bounds as expressed in (6)–(8). That is, we solve

−C αVmin , (17)

≥Vs.t. ε, (18)

Constraints (3)–(15),

for each integer value of ε from 1 up to the maximum DWC-value that
admits a feasible solution under constraints (3)–(15). Any positive
value of α is sufficient to ensure vkp take on their maximum value-
s—enabling a correct calculation of DWC—in an optimal solution to
model (17)–(18). We have chosen to utilize = −α 10 6 in all of our ex-
periments.
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3. Illustrative examples

We now illustrate our model using an example motivated by supply
chain acquisitions. When one organization acquires another, they pur-
chase the entire supply chain of the company. Within the two supply
chains, there may exist overlaps in service and/or capacity that could
benefit from consolidation. It is also possible that the combined demand
associated with the supply chain necessitates additional capacity. When
making decisions regarding which elements of the combined network to
integrate into the existing network, companies must also consider the
possibility of adding new facilities or transportation lanes to the net-
work in order to better satisfy the objectives of minimum cost and
maximum connectivity.

Consider the distribution networks of two companies, Company A
and Company B, where Company A is acquiring Company B. Within this
example, we demonstrate how the cost for a supply chain increases as
the DWC increases, and we show that the model bears no preference
towards utilizing the acquiring company's assets rather than integrating
those of the company being purchased. The original, pre-acquisition,
supply chain networks for Company A and Company B are shown in
Fig. 2a and 2b, respectively.

Suppliers are denoted by S, warehouses are denoted by W, cross-
docking stations are denoted by CD, and demand points are denoted by
D. We assume a single-commodity network, wherein suppliers S1, S2,
and S3 all produce the same product that is demanded by customers D1,
D2, D3, D4, and D5. The instance parameters are described in Tables 1
and 2 for Company A and Company B, respectively.

Prior to acquisition, both companies act independently. Their re-
spective Pareto optimal solutions are shown in Table 3. Due to the
network available for Company B, it cannot attain a DWC greater than
150, since there is exactly one node-disjoint path between supplier S3
and each customer. That is, Company B is unable to take precautions in
its supply chain in case of disruptions. Fig. 3a illustrates Company A's
network with a DWC of 225 and Fig. 3b shows company B's network
with a DWC of 150.

Once Company A acquires Company B, it must make decisions re-
garding the elements of Company B's supply chain that it will integrate

into its existing network. Due to the increase in demand from acquiring
Company B's customers, it is appropriate to consider other options, such
as an additional warehouse space or alternate shipping routes that were
not previously considered because demand levels did not warrant it.
Fig. 2c illustrates the merged network, where Company A's current
network is shown in bold, Company B's network is shown in dashed
lines, and additional possibilities are represented by thin lines. The
additional parameters are shown in Table 4.

Notice that after acquiring Company B, Company A, now referred to
as Company A+B, creates additional routes that did not exist in either
network. Since we are aware of efficient solutions for Company A and
Company B yielding DWC-values of 225 and 150, respectively, we note
that Company A+B's supply chain (Fig. 3c) does not utilize the optimal
supply chain for each individual company to achieve a DWC of 375. It
creates the routes from CD2 to D3 and from CD2 to D4, as well as the

Fig. 2. Unsolved comprehensive supply chain networks of Companies A, B, and A+B.

Table 1
Instance parameters for Company A.

Arcs −uij +uij bijp fij

S1→CD1 0 200 637 50
S1→W1 0 200 709 50
S2→CD2 0 200 732 50
S2→W1 0 200 912 50
W1→CD1 0 200 584 50
W1→CD2 0 200 395 50
CD1→D1 0 200 210 50
CD1→D2 0 200 190 50
CD2→D1 0 200 498 50
CD2→D2 0 200 384 50

Nodes dip
−rip +rip cip gip

S1 – 0 100 1.9 20
S2 – 0 100 1.7 20
W1 – – – – –
CD1 – – – – –
CD2 – – – – –
D1 75 – – – –
D2 75 – – – –
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route from CD3 to D2. Furthermore, after acquisition, Company A
closed its own supply facility S2 after acquiring S3; demand is met by
combining the resources of the two companies. Thus, we see that supply
chain network design following an acquisition is influenced by cost and
connectivity without preference towards pre-existing assets. More spe-
cifically, the total cost for such a supply chain is $255,540, a 12.6%
savings from maintaining the established supply chains. Table 5 shows

the full list of Pareto optimal solutions for the merged network.
These types of decision-making scenarios are not unique to the

application areas presented here. Network reorganization is a challenge
commonly encountered within military and humanitarian aid supply
chains in addition to traditional manufacturing supply chains. Rather
than continuing to make the complicated supply chain decisions asso-
ciated with an acquisition by guess or gut feel, the proposed model
offers an unbiased, mathematically-based tool for examining multiple,
non-dominated solutions representing varying levels of network

Table 2
Instance parameters for Company B.

Arcs −uij +uij bijp fij

S3→CD3 0 200 39 50
S3→W2 0 200 156 50
W2→CD3 0 200 177 50
CD3→D3 0 200 690 50
CD3→D4 0 200 935 50
CD3→D5 0 200 969 50

Nodes dip
−rip +rip cip gip

S3 – 0 200 1.5 30
W2 – – – – –
CD3 – – – – –
D3 50 – – – –
D4 50 – – – –
D5 50 – – – –

Table 3
Pareto optimal solutions for Company A (left) and Company B (right).

Company A Company B
Cost ($) DWC Cost ($) DWC

156,765 225 135,755 150
156,815 300

Fig. 3. Optimal supply chain networks for given DWC-values of 225, 150, and 375, for Company A (top), Company B (bottom left), and Company A+B (bottom right),
respectively.

Table 4
Cross network instance parameters for Company A+B.

Arcs −uij +uij bijp fij

S1→W2 0 200 873 50
S2→W2 0 200 664 50
S2→CD3 0 200 702 50
S3→W1 0 200 85 50
W2→CD2 0 200 248 50
CD2→D3 0 200 315 50
CD2→D4 0 200 561 50
CD2→D5 0 200 787 50
CD3→D2 0 200 531 50

Table 5
Pareto optimal solutions for the merged
network.

Cost ($) DWC

255,540 375
255,590 450
255,640 525
255,690 575
255,740 625
255,790 675
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connectivity and cost. In the following section, we further examine our
model by applying it to an industry-furnished dataset.

4. Industrial case study

Our research is motivated by the dynamic and uncertain environ-
ment in which today's supply chains operate. Supply chains are always
evolving in an attempt to deliver better products and/or services to
consumers more reliably and/or efficiently. Changes to an established
supply chain may be desirable (or necessary) in order to effectively
respond to changing supply/demand processes or the introduction of
new products and/or services. Additionally, a supply chain redesign
may be warranted based upon coordination and/or competition with
providers of related products and/or services. These factors drive fre-
quent corporate mergers and acquisitions, both of which necessitate
reevaluating supply chain designs. When an acquisition takes place,
decisions must be made regarding what elements of the acquired
company's supply chain to incorporate into the acquiring company's
supply chain and what elements to eliminate. On one hand, in-
corporating elements of the acquired company's supply chain creates
additional capacity and/or redundancy to shield against the effects of a
potential disruption; however, on the other hand, consolidation may
present an opportunity to leverage economies of scale. These decisions
are complex, motivating the development of decision support models
that weigh the cost/risk tradeoffs associated with network (re)design
decisions.

We now demonstrate our multi-objective network design metho-
dology using an industry-furnished test case. This case represents a US-
based $15+ billion food company's (“ParentCo”) consideration of ac-
quiring a smaller, competing business (“ChildCo”) that produces similar
and/or desirable products. ParentCo's network contains two echelons of
supply nodes. First, live animals are initially processed at an intake
facility (A-nodes in Fig. 4) in ParentCo's current supply chain. The raw
food products produced by the intake facilities are shipped to one of
ParentCo's further processing sites (B-nodes in Fig. 4), where additional
preparation and/or seasoning occurs. Once the food items have com-
pleted all required processing, they are shipped to a ParentCo testing
and packaging center (a subset of the J-nodes in Fig. 4) to complete the
production process. Finally, upon passing final inspection, ParentCo's
finished, packaged food items are sent to customer demand nodes such
as grocery stores and warehouse clubs (a subset of the K-nodes in Fig. 4)
in ParentCo's current supply chain.

Prior to any acquisition activities, ChildCo owned and operated a
single supply echelon of raw material intake and processing facilities

(C-nodes in Fig. 4). As was the case with ParentCo, ChildCo's processed
raw materials are sent to testing and packaging locations (which may or
may not be disjoint from ParentCo's J-nodes in Fig. 4). Quality-tested
ChildCo products are finally sent to customer demand locations which
may or may not overlap with ParentCo's K-nodes in Fig. 4.

In any acquisition, the acquiring company has many options to
consider for how to structure or organize the new, aggregate supply
chain's operations. Our multi-objective network design methodology
can help supply chain architects to evaluate the tradeoff between the
aggregate supply chain's total cost and the connectivity of the overall,
aggregate supply chain network.

We consider an aggregate ParentCo + ChildCo network containing
544 nodes and over 2600 arcs. Of these nodes, 27 are ParentCo's supply
nodes (i.e., A-nodes) and 55 are ChildCo's supply/further processing
nodes (i.e., C-nodes). Further, our case study data contains 15 ParentCo
J-nodes and 17 ChildCo J-nodes—these two sets of nodes do share some
locations in common. Combining both ParentCo's and ChildCo's de-
mand points results in 389 total demand nodes, all of which must have
their demand satisfied. A total of 735 arcs exist in ParentCo's original
network, and 1895 potential arcs, comprised of both ChildCo's current
arcs and new arc options that initially do not exist in either company's
network, must now be considered in terms of connectivity and cost
savings potential purposes (e.g., an arc from a ParentCo J-node to an
acquired ChildCo K-node). The data from this case study instance is
available by request from the authors.

The model outlined in Section 2.2 is coded in AMPL and analyzed
using Gurobi 7.5.1 as the solver. Computation was performed using
eight threads on a PC running an Intel i7 5960×3.7 GHz processor
with 128 GB of RAM. Our Gurobi analyses conclude when either 1) a
feasible solution is found with an optimality gap of less than or equal to
0.0005% or 2) the 1 h time limit per thread elapses, whichever occurs
first.

The scale of the modeled supply chain networks reflects the appli-
cation of our model: the acquisition of a business that produces goods
similar to those of the acquiring company. We consider both the acti-
vation of the acquired network, as well as the possible activation of
additional arcs within the combined network. Parameter values were
obtained by utilizing summary statistics/calculations from the actual
data provided by the company. Demand was distributed uniformly
across the available demand nodes to disguise actual practice, but the
scale of the demand values were preserved. Furthermore, capacity
limits were based on an assumed 90% utilization, as disclosed by the
company. We examine both single commodity and multiple commodity
cases. Within the multiple commodity case, every supply node does not
produce each commodity, nor is each commodity demanded at each
demand node. However, each commodity has approximately 80% of its
supply nodes in common with the other commodities in order to cause
multiple commodities to share capacity on arcs.

4.1. Results

Implementing the ε-constraint method described in Section 2.2, we
obtain an approximation (subject to the 0.0005% optimality tolerance
used in Gurobi) of the Pareto frontier (hereinafter referred to as the
Pareto frontier) composed of approximately efficient solutions (here-
inafter called efficient solutions) for each commodity case study. For
the single-commodity case as shown in Fig. 5a, the Pareto frontier ap-
pears to be piecewise linear from a macro-viewpoint. By examining a
subset of the curve, we can see both the strongly efficient and weakly
efficient solutions (Fig. 5b). It took approximately 4 h of CPU time in
order to determine 516 efficient solutions of the Pareto frontier.

Similarly, when we examine the three-commodity case, we again
find the totality of the Pareto frontier to appear to be piecewise linear
(Fig. 6a), but if we examine a smaller subsection, we notice otherwise
(Fig. 6b). It required approximately 12 h of CPU time to determine a
1,533-solution Pareto frontier, from which we were able to remove anFig. 4. Generalized Network with Two Types of Supply Nodes.
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additional 12% of the solutions that were actually dominated (as a
result of the Gurobi optimality gap tolerance).

Moreover, we can examine how the computation time increases as
the problem scales. Utilizing the same data set as in Section 4, we
generated two additional instances for both the single-commodity and
three-commodity cases—one with 182 nodes and 754 arcs and the
other with 363 nodes and 1,714 arcs. We generate the approximate ef-
ficient frontier for each instance given the machine/solver parameters
outlined in Section 4 and summarize the computational time needed to
obtain the entire Pareto frontier in Table 6.

For both the single-commodity and three-commodity cases, there is
some threshold such that the solve time begins to decrease as the in-
stance size increases. Prior to this inflection point, the two are directly
related. As the problem size grows, the set of possible paths increases
resulting in longer run times. However, after some threshold problem
size, the problems become easier to solve. A potential explanation for
this is that, although the problem size is growing, it is possible that the
number of nodes in one stage of the supply chain (i.e., A-, B-, C-, J-, or
K-nodes) grows disproportionately slow relative to the other stages. A
consequence of this is that the DWC becomes limited by the slower-
growing stage, and as a result, there may be many alternative solutions
(via taking subsets of the nodes from the other stages) that lead to the
same DWC-value. In this scenario, the DWC objective may pose more of
a challenge on smaller instances than on larger instances.

Table 6 shows how the number of simplex iterations performed by
Gurobi is far greater for the 363-node case than is required to solve the
544 nodes for both the one and three product cases, respectively. In
fact, the correlation coefficient for the number of simplex iterations
with solve time for an instance is 0.96 (0.87) for the single (three)
product, 363-node case. Further, the correlation coefficient for the
number of branch-and-cut nodes that Gurobi evaluated with solve time
was 0.93 and 0.86 for the single and three product cases with 363

nodes, respectively. As the correlation coefficients for the 544-node
cases are of similar magnitude for both number of simplex iterations
and branch-and-cut nodes evaluated, the difference in instance solution
times is strongly related to the commercial solver's solution approach
on each problem instance.

As an additional observation from Table 6, instances with more
commodities require longer computation time. For the largest instance
(544 nodes and 1,714) we believe the solver reaches optimality quicker
for the three-commodity case than the single-commodity case due to
the specific network used in Section 4.

The model is conceived as a high-level, strategic decision-making
tool. As such, it would be run only when supply chain redesigns are
under consideration. Additionally, the decisions suggested by the model
may have an impact on the profitability of a company; if a redesign is
improperly handled, the resulting loss of revenue or excessive costs
incurred can be significant. Thus, allowing the optimization software to
run for up to 24 h is appropriate given the frequency and timeline as-
sociated with the model's use.

4.2. Network resiliency

Section 4.1 analyzes the tradeoff between cost and DWC for given
supply chain. We posit, moreover, that the connectivity metric of DWC
directly corresponds to a network's resilience, where a more reliable
system results from a higher cost network. In order to show a network's
DWC-level is directly related to its ability to withstand disruptions, we
subjected a network to a variety of node-failure scenarios. In particular,
we considered model (17)–(18) and generated the efficient frontier for
the one product, 544-node case as depicted in Fig. 5a. We sorted the
non-dominated solutions by DWC-value and extracted the 10th, 25th,
50th, 75th, and 90th percentile solutions. These DWC-levels can be
envisioned as corresponding to different levels of “conservatism” where

Fig. 5. Single-commodity Pareto curve.

Fig. 6. Three-commodity Pareto curve.
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we conjecture that the higher-percentile solutions should better with-
stand disruption. For each percentile solution, we fixed the network
(i.e., we fixed all yij- and zip-variables to the given solution values), we
eliminated constraints (6)–(10), and allowed demand/supply restric-
tions (i.e., constraints (3)) to be soft. With the network pre-defined, we
converted the objective into a min-cost flow objective in order to
measure the number of nodes whose demand was unsatisfied as well as
the percentage of unmet demand within the network. We subjected
each node in the respective networks to a given probability of failure,
such that if a node fails, all arcs emanating from and terminating with
that node also fail. Using failure probabilities of 0.5%, 1%, and 5%, we
generated 30 scenarios per probability. Table 7 summarizes the results.
Note that the number of unsatisfied demand nodes and the percentage
of unmet demand strictly decreases as the DWC-level increases. Ad-
ditionally, as the failure probability increases, the number of unsatisfied
demand nodes and the percentage of unmet demand strictly increases
for a given DWC-level. Thus, we see that increasing the DWC-level
concurrently improves the network's resiliency.

Table 7 shows that “conservation” levels actually drive a design that
is more tolerant to failure. It is important to mention that there may be
cases in which DWC and resiliency are not necessarily directly related.
That is, DWC is only a proxy for the network's ability to withstand
disruption, and hence it is possible to see the network's ability to
withstand disruption decrease for higher DWC-values. More specifi-
cally, a network may have a demand node that is highly connected, and
although adding an additional node-disjoint path to that demand node
will increase the network's DWC, it does not necessarily improve the
network's resilience; the additional path to the highly connected node
does not mitigate a failure along any path to the other demand nodes.
Thus, although the number of unsatisfied demand nodes and the per-
centage of unmet demand strictly decreases as the DWC-level increases,
the magnitude of that change is not constant.

4.3. Model extension

Note that by requiring a set of node-disjoint paths to have no
common nodes except for the demand node, our model accounts for
supplier failure in constructing a resilient network. If we do not con-
sider supplier failure, then we may redefine node-disjoint such that a set
of paths associated with a demand node ∈k Dp need only have unique
transshipment nodes. That is, we allow multiple paths emanating from
a given supplier to a given customer. This relaxation is achieved by
changing constraint set (7) in the model outlined in Section 2 to

�∑ ′ ≤ − − ∀ ∈ ∈ ∈
∈

=−x i z p P k D i S|FS( )|(1 (1 )), , , ,
j i

ijkp r ip p p
FS( )

{ 0}ip (19)

Utilizing the same solution methodology and optimality tolerance,
we obtain the Pareto curve for the single-commodity case (Fig. 7a) and
three-commodity case (Fig. 8a). Both curves appear to be piecewise
linear at low resolutions due to the density of the points. Increasing the
resolutions of both highlights the discrete nature of the graphs by
showing the strongly efficient and weakly efficient solutions (see
Figs. 5b and 6b). It took 14 h of CPU time to find 536 non-dominated
solutions for the single-commodity case. The three-commodity case
took approximately 12 h of CPU time to determine a 1531-solution
Pareto frontier, from which we were able to remove an additional 12%
of the solutions that were actually dominated (as a result of the Gurobi
optimality gap tolerance).

Table 6
Computational time and problem size for each instance.

Nodes 13 182 363 544 182 363 544
Arcs 25 754 1714 2632 754 1714 2632
Products 1 1 1 1 3 3 3

Variables Binary 153 4188 25,449 1,026,524 11,078 73,144 3,074,306
Linear 44 405 1007 3566 1207 3049 10,696

Constraints Equality 64 1112 7294 195,434 3335 21,883 585,911
Inequality 349 1410 9668 1,962,570 4630 32,998 5,889,835

Solve Time (s) Mean 0.09 0.10 2735.92 28.56 1.22 3044.51 27.98
0th Percentile 0.1 0.1 0.7 0.9 0.6 30.0 14.3
25th Percentile 0.1 0.1 5.1 2.7 0.7 152.3 20.3
50th Percentile 0.1 0.1 270.8 3.9 0.7 310.4 24.0
75th Percentile 0.1 0.1 1062.3 7.6 0.8 782.9 32.1
100th Percentile 0.1 0.1 23,981.0 164.3 5.3 25,568.8 186.4

Simplex Iterations 25th Percentile 164 39 5739 4381 2202 198,059 36,825
50th Percentile 218 40 1,158,967 4811 2623 454,136 40,181
75th Percentile 227 43 4,731,037 6224 3168 964,962 43,185
100th Percentile 248 54 84,804,100 198,250 9466 82,705,299 153,902

Branch & Cut Nodes 25th Percentile 1 0 16 1 1 4824 1
50th Percentile 1 0 422,760 1 1 29,384 1
75th Percentile 1 0 1,491,031 70 1 38,160 1
100th Percentile 1 0 22,437,284 58,395 1 5,741,618 5310

Table 7
Number of nodes with unmet demand and the percentage of unmet demand for
a given DWC-level of the one product, 544-node case under various node-failure
probabilities.

Unsatisfied

Failure Probability DWC-level Nodes % Demand

0.50% 10.00% 0.80 0.53%
25.00% 0.73 0.46%
50.00% 0.70 0.45%
75.00% 0.57 0.40%
90.00% 0.33 0.25%

1.00% 10.00% 2.27 1.40%
25.00% 1.60 1.06%
50.00% 1.33 0.89%
75.00% 0.97 0.64%
90.00% 0.93 0.62%

5.00% 10.00% 8.53 5.46%
25.00% 8.40 5.20%
50.00% 8.26 5.02%
75.00% 5.33 3.39%
90.00% 3.83 2.60%
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For both the single- and three-commodity instances, each of the
formulations (Section 4.1 and Section 4.3) result in an approximately
piecewise-linear efficient frontier (see Figs. 7a and 8a) in which there
are two points of interest in which the rate at which the DWC increases
for a unit increase in cost changes. More specifically, we see that as we
move northeast along the Pareto curve a unit increase in the DWC re-
quires a larger increase in the cost.

We have utilized DWC as a connectivity measure and have justified
its use relative to other connectivity metrics in the literature. Still,
utilizing DWC as an objective may lead to network designs that are
conservative: It will take a significant number of node failures before a
demand node is disconnected from supply. If less-conservative solutions
are desired, the DWC metric can be modified (e.g., by defining con-
nectivity using a less-restrictive arc-disjoint paths interpretation) to
drive towards solutions that incorporate redundancy in distribution
channels (i.e., arcs) even if there is little redundancy among facilities.
An additional pitfall of DWC is that it does not ensure each node-dis-
joint path is actually capable (in terms of capacity) of satisfying a given
node's demand. To ensure each node's demand could be satisfied in the
event of k node failures would require imbedding within the network
design model a network interdiction model of the variety studied by
Wood (1993). Because network interdiction models are notoriously
difficult to solve in their own right, we have opted not to pursue such an
approach at this time.

4.4. Managerial insights

Since model (17)–(18) is a high-level, strategic decision-making
tool, it is relevant to discuss the managerial insights that can be derived.
With regards to acquisition, we have shown in Section 3 that the model
has no bias towards the acquiring company's pre-existing infrastructure
and will merge the set of networks to create a minimum cost supply
chain for a given DWC. Moreover, the example in Section 3 also

demonstrated that the maximum DWC-value of the combined network
was greater than the sum of the maximum DWC-values of the individual
networks and could be attained at a lower cost. However, this result is
supply chain dependent.

We analyze the benefits of acquisition by generating a set of in-
stances such that the size ratio between Company A and Company B
varied. By computing the maximum DWC-value for each network (i.e.,
A, B, and the aggregated network), and subsequently determining the
minimum cost that could be achieved with that DWC-value, we were
able to calculate the cost savings and DWC improvement obtained
through acquisition. Table 8 summarizes these results. The instances
were derived by decomposing the three-commodity industrial data set
utilized in Section 4 (i.e., the 8:5 column in Table 8) into two networks,
where some node locations are common to both networks. In some
cases the maximum DWC-value of the combined network was less than
the sum of the maximum DWC-values of the individual networks, while
in others it was more. Their associated costs, though, were lower in all
instances. In these examples, we see the tradeoff between network
connectivity and cost. Moreover, notice that the cost savings increases
as the two companies are more similar in size.

Given two mutually disjoint networks, though, it is possible that
acquisition results in no cost and no DWC increase/decrease. We ver-
ified this claim by generating a single-commodity instance such that
there is no overlap between the supply chains. The set of cross-network
arcs was not exhaustive, however, in order to better relate to real-world
policies. Table 9 summarizes the results of this instance. Note that the
cost and the DWC from the aggregated network is exactly equal to the
sum of the cost and the DWC from the separate networks.

Whether or not merging two networks will result in savings or in-
creased connectivity is largely case-based. However, the managerial
insights can be generalized for certain categories of supply chains. For
example, when two supply chains are both comparably sized and con-
tain overlap in facility locations, one can expect a significant cost

Fig. 7. Single-commodity Pareto curve when supplier failure is not considered.

Fig. 8. Three-commodity Pareto curve when supplier failure is not considered.
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savings. Since the supply chains are similarly designed, there can be
little improvement in connectivity when merging the networks as
compared to maintaining them separately. On the hand, when com-
panies are geographically isolated, it may be better suited to maintain
the pre-existing supply chains independently, without any inter-net-
work shipping.

5. Conclusions and future work

We have investigated the impact of considering both cost and con-
nectivity when combining supply chain networks in a post-acquisition
environment from a deterministic optimization viewpoint. This pro-
blem is motivated by interviews with industry contacts and familiarity
with several real-world scenarios. For this problem, we have con-
tributed a network design optimization model that utilizes cost and
connectivity objectives in evaluating network flow and network design
decisions. We outlined an illustrative example for model validation and
applied the model to an industry-motivated case study to derive insights
for the application of corporate acquisition. Although solutions to our
model will vary by instance, we have identified for our case study in-
stance how an appropriately executed acquisition might lead to redu-
cing costs and increasing connectivity. In the future, we aim to extend
the model to incorporate storage capabilities throughout the supply
chain as well different risk levels associated with a given arc. In par-
ticular, it would be helpful for the model to account for the likelihood of
a given arc or facility to fail and to construct the optimal supply chain at
a minimal cost such that the likelihood of meeting demand is within a
certain threshold. Strengthening the connectivity measure (i.e., in the
vein of the “imbedded network interdiction model” described at the end
of Section 4.3) to better account for network failure would be an in-
teresting follow-on investigation as well.
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Cost savings of acquisition for various individual network sizes.

Ratio of number of nodes Company A:Company B

8:5 1:1 2:1 3:1 1:2 1:3

Nodes Company A 399 249 399 399 125 86
Company B 249 249 203 129 249 249
Combined Network 544 418 515 458 308 272

DWC Company A 1,872,300 1,034,500 1,872,300 1,872,300 109,200 26,600
Company B 1,010,700 1,010,700 103,700 21,000 1,010,700 1,010,700
Combined Network 2,710,400 2,004,600 1,872,300 1,872,300 1,169,300 1,053,800
Improvement −6.4% −2.0% −5.5% −1.1% 4.2% 1.6%

Cost Company A $215,593,000 $136,988,000 $215,593,000 $215,593,000 $43,885,700 $12,113,700
Company B $74,309,000 $74,309,000 $61,882,500 $30,533,200 $74,309,000 $74,309,000
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Savings 24.6% 27.5% 19.0% 10.8% 21.0% 11.1%

Table 9
Instance where aggregating disjoint networks A and B results in no benefit.

Company A Company B Combined Network

Suppliers 3 3 6
Warehouses/Cross-Docks 6 4 10
Customers 30 20 50
DWC 3900 2550 6450
Cost $3,021,400 $1,510,940 $4,532,340
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