INTERSECTION DISJUNCTIONS FOR REVERSE CONVEX SETS

ELI TOWLE AND JAMES LUEDTKE
UNIVERSITY OF WISCONSIN – MADISON

INTRODUCTION

- Reverse convex sets: of the form \(P \setminus C \), where \(P \) is polyhedral and \(C \) is open and convex
- General set structure arising in MINLP
 - \(P \): your favorite LP relaxation
 - \(C \): contains no solutions feasible to MINLP
- We consider valid inequalities for \(P \setminus C \)
- Motivated by cases where \(C \) is nonpolyhedral or defined by a large number of inequalities

Reverse convex sets have applications to: polynomial optimization [4], bilevel optimization [5], binary integer programming [6], quadratically constrained programming [7], and DC programming [8]

TWO-WAY DISJUNCTION FOR \(P \setminus C \)

- Assume the basic solution is not in \(C \)
- \(\alpha_j \): minimum we can move along \(\tilde{p}_j \) from \(\tilde{x} \) and stay in \(C \):
 \[\alpha_j := \inf \{ \lambda > 0 : \tilde{x} + \lambda \tilde{p}_j \in C \} \quad \forall j \in N \]
- Partition \(N \) into three sets depending on the extreme rays’ intersection with \(Q \):
 \[N_0 := \{ j \in N : \alpha_j = +\infty \} \]
 \[N_1 := \{ j \in N : \alpha_j < +\infty, \beta_j = +\infty \} \]
 \[N_2 := \{ j \in N : \alpha_j < +\infty, \beta_j < +\infty \} \]
- Note: \(N_0 \)’s rays do not intersect \(C \)
- **Theorem 2.** If \(N_0 = \emptyset \), every \(x \in P \setminus C \) satisfies
 \[\sum_{j \in N} \frac{x_j}{\alpha_j} \leq 1 \quad \text{or} \quad \sum_{j \in N} \frac{x_j}{\beta_j} \geq 1. \]
- **Corollary 3.** If \(N_0 \neq \emptyset \) but \(\tilde{p}_j \in \text{recc} C \) for all \(j \in N_0 \), Theorem 2’s disjunction contains \(P \setminus C \).
- Idea: how else can we use \(\text{recc} C \)?

MULTI-TERM DISJUNCTION

- Line segment from \(r \in \mathbb{R}^n \) given \(\alpha, \beta \in \mathbb{R} \):
 \[(\alpha, \beta) := \{ (\lambda x, \lambda \beta) : \lambda \in [\alpha, \beta] \} \]
- Define \(|N_j| + 1 \) sets \(S_{0}^{\beta}(k) \) and \(S_{1}^{\beta}(k) \) (in \(N \)):
 \[S_{0}^{\beta}(k) := \text{conv} \left(\bigcup_{j \in N \setminus N_2} (\alpha_j, +\infty) \tilde{p}_j \right) + \text{recc} C \]
 \[S_{1}^{\beta}(k) := \text{conv} \left(\bigcup_{j \in N_2} [0, \beta_j] \tilde{p}_j \right) + (-\infty, 0] \tilde{p}_k + \text{recc} C \]
- **Lemma 4.** \(L \in C \subseteq \bigcup_{k \in N_2} (P \setminus C)(P \setminus S_{1}^{\beta}(k)) =: D \)
 - i.e., we can consider cuts for disjunction \(D \)
- **Theorem 5.** It holds that
 \[\text{conv} (P \setminus C) = \text{conv} \left(\bigcup_{k \in N_2} (P \setminus S_{1}^{\beta}(k)) \right). \]

CONCLUSION

Our contributions:
- Propose disjunctive framework for generating cuts for \(P \setminus C \) from points outside \(C \)
- Present two disjunctions for \(P \setminus C \), one of which uses recursion directions
- Provide linear relaxations of disjunctive terms
- Future directions:
 - Analyze disjunction strength for bounded \(P \)
 - Finite/limit convergence to \(\text{conv}(P \setminus C) \)
 - Generalize to bases without basic solution

ACKNOWLEDGMENTS

This research is partially supported by NSF grant SES-1422768.

REFERENCES

POLYHEDRAL RELAXATIONS

- To use Theorem 5 in a disjunctive program, we need polyhedral relaxations of \(P \setminus S_{0}^{\beta}(k) \)
- Valid inequalities for \(P \setminus S_{0}^{\beta}(k) \): \(M_{0} \) indices \(i \in N \setminus N_2 \) such that \(\{ \text{cone}(\tilde{p}_i, \tilde{p}_j) \cap \text{recc}(C) \} \subseteq [0, +\infty) \tilde{p}_j \) s.t. \(\beta_j = +\infty \)
- For \(j \in N_0 \), \(\gamma_j(U) := \max_{\tilde{p}_j \geq 0} \gamma_j \)
- **Lemma 4.** \(\tilde{p} \subseteq \text{conv}(\tilde{p}) \)
- **Theorem 6.** Let \(U \subseteq M_0 \). The inequality
 \[\sum_{j \in U} \frac{x_j}{\alpha_j} - \sum_{j \notin N_2} \frac{x_j}{\gamma_j(U)} \leq 1 \]
 is valid for \(P \setminus S_{0}^{\beta}(k) \).