Robust submodular maximization under matroid constraints Sebastian Pokutta, Mohit Singh & Alfredo Torrico

Problem Formulation

- Ground set $V = \{1, \ldots, n\}$ and matroid $\mathcal{M} = (V, \mathcal{I})$.
- Collection of of non-negative, monotone, submodular¹ functions $f_i : 2^V \to \mathbb{R}_+$. We want to solve:

 $\max_{S \in \mathcal{I}} \min_{i \in [k]} f_i(S)$

• Krause et al. [6] prove that problem (1) is NP-hard to approximate to any polynomial factor. This motivates the necessity of bi-criteria solutions.

Our Approach: relax the constraints. We construct a small family of feasible sets whose union S^{ALG} has (nearly) optimal objective value.

Example in partition constraints:

- $V = P_1 \cup \cdots \cup P_q$ and $\mathcal{I} = \{S \subseteq V : |S \cap P_j| \le b_j, \forall j \in [q]\}.$
- $S^{ALG} = S_1 \cup \cdots \cup S_\ell \quad \rightarrow \quad |S^{ALG} \cap P_j| \le \ell \cdot b_j.$

Our Results and Contributions

• Extended version of the *threshold greedy* algorithm introduced by Badanidiyuru and Vondrak [2].

Algorithm 1 Extended Threshold-Greedy

Input: $\ell \geq 1$, ground set V with n := |V|, monotone submodular function $g : 2^V \to \mathbb{R}_+$, matroid $\mathcal{M} = (V, \mathcal{I}) \text{ and } \delta > 0.$

Output: feasible sets $S_1, \ldots, S_\ell \in \mathcal{I}$.

- 1: **for** $\tau = 1, ..., \ell$ **do**
- 2: $S_{\tau} \leftarrow \emptyset$ $d \leftarrow \max_{e \in V} g(\cup_{j=1}^{\tau-1} S_j + e)$
- for $(w = d; w \ge \frac{\delta}{n}d; w \leftarrow (1 \delta)w)$ do
- for $e \in V \setminus S_{\mathcal{T}}$ do
- if $S_{\tau} + e \in \mathcal{I}$ and $g_{\bigcup_{j=1}^{\tau} S_j}(e) \ge w$ then
- $S_{\tau} \leftarrow S_{\tau} + e$

Proposition 1. Given $\ell \ge 1$, a monotone submodular function $g: 2^V \to \mathbb{R}_+$ with $g(\emptyset) = 0$, and parameter $\delta > 0$, Algorithm 1 returns feasible sets $S_1, \ldots, S_\ell \in \mathcal{I}$ such that

$$g(S_1 \cup \cdots \cup S_\ell) \ge \left(1 - \left(\frac{1}{2 - \delta}\right)^\ell\right) \cdot \max_{S \in \mathcal{I}} g(S).$$

This algorithm performs $O(\frac{n\ell}{\delta}\log\frac{n}{\delta})$ function calls, independent of the rank of the matroid.

- Efficient bi-criteria algorithm for problem (1).
- Outer loop: get an estimate γ on the value OPT := $\max_{S \in \mathcal{I}} \min_{i \in [k]} f_i(S)$ via a binary search.
- -Inner loop: for a given $\delta > 0$, run Algorithm 1 on $g^{\gamma}(S) := \frac{1}{k} \sum_{i \in [k]} \min\{f_i(S), \gamma\}$ with $\ell = \left[\log \frac{2k}{\epsilon} / \log(2 - \delta) \right].$
- We stop the binary search whenever we get a relative error of $1 \epsilon/2$, namely, $(1 \epsilon/2) \text{ OPT} \le \gamma \le 1$ OPT.

Theorem 1. For problem (1), there is a polynomial time algorithm that returns a set S^{ALG}, such that for given $0 < \epsilon, \delta < 1$, for all $j \in [k]$ it holds

$$f_j(S^{\text{ALG}}) \ge (1 - \epsilon) \cdot \max_{S \in \mathcal{I}} \min_{i \in [k]} f_i(S),$$

where $S^{ALG} = S_1 \cup \cdots \cup S_\ell$ with $\ell = \left[\log \frac{2k}{\epsilon} / \log(2 - \delta)\right]$, and S_1, \ldots, S_ℓ are feasible.

• Implementation improvement: early stopping criteria.

- If in iteration $\tau \in [\ell]$ of Algorithm 1 on g^{γ} we obtain a set S_{τ} such that $g^{\gamma}(\bigcup_{t=1}^{\tau} S_t) < (1 - 1/(2 - 1))$ $(\delta)^{\tau}$) $\cdot \gamma$, then we stop and update the upper bound on the optimum to be γ .

¹For any $e \in V$ and $A \subseteq B \subseteq V \setminus \{e\}$, $g_A(e) \ge g_B(e)$, where $g_A(e) \coloneqq g(A + e) - g(A)$ and $A + e \coloneqq A \cup \{e\}$

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Email: atorrico3 at gatech dot edu, sebastian.pokutta, mohit.singh at isye dot gatech dot edu

Computational Experiments

In all experiments we consider partition constraints $\mathcal{I} = \{S : |S \cap P_i| \le b, \forall j \in [q]\}$, note same budget b for each part.

Tested Algorithms and Baselines.

- (prevE-G) the extended greedy of [1] with no improvements, $\ell = \lceil \log \frac{2k}{\epsilon} \rceil$.
- (E-G) the extended greedy of [1] with improvements, $\ell = \lceil \log \frac{2k}{\epsilon} \rceil$.
- (E-ThG) the extended threshold greedy (this work), $\ell = \left[\log \frac{2k}{\epsilon} / \log(2 \delta) \right]$.
- (E-StochG) a heuristic we called extended stochastic greedy, $\ell = \left[\log \frac{2k}{\epsilon}\right]$.
- (RS) Random Selection.
- (G-Avg) the lazy greedy algorithm on the average function $\frac{1}{k} \sum_{i \in [k]} f_i$.

Experiment #1: Non-parametric Learning.

- In this experiment we show that our improved algorithms clearly outperform prevE-G.
- Let X_V be a set of random variables corresponding to bio-medical measurements, indexed by a ground set of patients V. We assume for every subset $S \subseteq V$, $X_S \sim \mathcal{N}(\mu_S, \Sigma_{S,S})$.
- We assume the covariance matrix $\Sigma_{S,S} = [\mathcal{K}_{e,e'}]_{e,e'\in S}$ to be given in terms of the squared exponential kernel $\mathcal{K}_{e,e'} = \exp(-\|x_e - x_{e'}\|_2^2/h)$ with h = 0.75.
- We use the Parkinson Telemonitoring dataset [8] consisting of n = 5,875 patients with early-stage Parkinsons disease and the corresponding bio-medical voice measurements with 22 attributes.
- Assuming the Informative Vector Machine (IVM) model, we want to solve

$$\max_{S \in \mathcal{I}} \min_{i \in [20]} \left\{ \frac{1}{2} \log \det(\mathbf{I} + \sigma^{-2} \boldsymbol{\Sigma}_{SS}) + \sum_{e \in S \cap \Lambda_i} \eta_e \right\},\$$

where $\sigma^2 = 1$, each Λ_i is a random set of size 1,000, and $\eta \sim [0,1]^V$ is a uniform error vector.

Figure 1: Non-parametric learning. We made 20 random runs considering q = 3 parts and budget b = 5. Performance profiles (a) for running time (note that E-G is covered by E-ThG) and (b) for function calls. In (c) is the objective value versus the violation ratio in a single run of each method. In (d) is the box-plot for the function calls.

Experiment #2: Exemplar-based Clustering.

- In this experiment we show that E-ThG outperforms the rest since its no-dependency on the rank. We do not implement prevE-G.
- Solving the k-medoid problem is a common way to select a subset of exemplars that represent a large dataset V [5]. This is done by minimizing the sum of pairwise dissimilarities between elements.

(1)

- submodular [4], thus maximizing f is equivalent to minimizing L.
- represented by feature vectors (number of elements in them).

$$m_{Se}$$

 $\eta \sim [0,1]^V$ is a uniform error vector.

 $q \in \{10, ..., 29\}$ parts and budget b = 5, $|\Lambda_i| = 3,000$.

Figure 2: *Clustering:* (small) performance profiles (a) for the running time and (b) for the function calls. (Large) box-plots (c) for the running time and (d) for the function calls.

References

- online algorithms. *arXiv preprint arXiv:1710.04740*, 2017.
- Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1497–1514, 2014.

- Interscience, 2009.
- Learning Research, 9(Dec):2761–2801, 2008.
- Signal Processing, pages 594–597, March 2010.

• Formally, define $L(S) = \frac{1}{V} \sum_{e \in V} \min_{v \in S} d(e, v)$, where $d: V \times V \to \mathbb{R}_+$ is a distance function that represents the dissimilarity between a pair of elements. By introducing an appropriate auxiliary element e_0 , it is possible to define a new objective $f(A) := L(\{e_0\}) - L(A + e_0)$ that is monotone and

• We use the VOC2012 dataset [3] where the ground set V corresponds to images. These images are

• We use the Euclidean distance $d(e, e') = ||x_e - x_{e'}||$ and x_{e_0} as the origin. We want to solve

$$\sup_{\mathcal{I}} \min_{i \in [20]} \left\{ f(S) + \sum_{e \in S \cap \Lambda_i} \eta_e \right\},$$

where f is the function defined above, each Λ_i is a random set of fixed size with $i \in [20]$, and

• We consider two experiments: (small) with n = 3,000 images, 20 random instances considering q = 6 and b = 70, $|\Lambda_i| = 500$ and (large) with n = 17,125 images, 20 random instances

^[1] N. Anari, N. Haghtalab, N. Seffi, S. Pokutta, M. Singh, and A. Torrico. Robust submodular maximization: Offline and

^[2] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions. In Proceedings of the Twenty-

^[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

^[4] R. Gomes and A. Krause. Budgeted nonparametric learning from data streams. In *Proceedings of the 27th International* Conference on International Conference on Machine Learning, ICML'10, pages 391–398, 2010.

^[5] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster analysis, volume 344. Wiley-

^[6] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation selection. *Journal of Machine*

^[7] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than lazy greedy. In *Proceedings of* the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI'15, pages 1812–1818. AAAI Press, 2015.

^[8] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig. Enhanced classical dysphonia measures and sparse regression for telemonitoring of parkinson's disease progression. In 2010 IEEE International Conference on Acoustics, Speech and