Robust submodular maximization under matroid constraints

Problem Formulation

* Ground set V' ={1,...,n} and matroid M = (V, 7).

e Collection of of non-negative, monotone, submodular! functions fi: 2V R.. We want to solve:

e min £i(5) )

e Krause et al. [6] prove that problem (1) 1s NP-hard to approximate to any polynomial factor. This
motivates the necessity of bi-criteria solutions.

Our Approach: relax the constraints. We construct a small family of feasible sets whose union SALG
has (nearly) optimal objective value.

Example in partition constraints:
V=Pu-uPandZI={ScV:|SnP;<b;, Vjel[q]}.
‘SALGZSlu---USg — |SALGﬂPj|S€'bj.

Our Results and Contributions

e Extended version of the threshold greedy algorithm introduced by Badanidiyuru and Vondrak [2].

Algorithm 1 Extended Threshold-Greedy

Input: ¢ > 1, ground set V' with n := |V
M= (V,Z)and § > 0.
Output: feasible sets S1,...,5p € Z.

1: fort=1,...,¢do

2: ST ~

30 d < maXcy g(u};llSj +e)

4. for (w=d;w> %d;w «~(1-0)w) do
5: for e € V\S; do
6
7

, monotone submodular function ¢ : 2V — R,, matroid

if S +e €7 and gu;lsj(e) > w then
St < Sr+e

Proposition 1. Given { > 1, a monotone submodular function g : 2V — R, with g(@) = 0, and parameter
0 > 0, Algorithm 1 returns feasible sets S1,...,Sy € L such that

1

g(Sju--uSy) > (1 - (ﬁ)ﬁ) -rglea%(g(S).

This algorithm performs O(%ﬁ log %) function calls, independent of the rank of the matroid.

e Efficient bi-criteria algorithm for problem (1).

— Outer loop: get an estimate «y on the value OPT := maxg7 MiNery] f;(.S) via a binary search.

—Inner loop: for a given & > 0, run Algorithm 1 on ¢7(S) := %Ziem min{ f;(S),v} with
(= [10g%/ log(2—-10)].

— We stop the binary search whenever we get a relative error of 1 — €/2, namely, (1 —¢/2) OPT < v <
OPT.

Theorem 1. For problem (1), there is a polynomial time algorithm that returns a set SALG, such that
for given 0 < €,0 < 1, for all j € [k] it holds

PEAER < ] _ .
fi(577) 2 (1 =€) -max wmin fi(S),

where SALG = Sy U u Sy with £ = [log %/log(Q —-0)|, and S, ..., Sy are feasible.

e Implementation improvement: early stopping criteria.

—If in iteration 7 € [£] of Algorithm 1 on g7 we obtain a set S such that g7 (uv]_,S¢) < (1 -1/(2-
0)7) -, then we stop and update the upper bound on the optimum to be ~.

Sebastian Pokutta, Mohit Singh & Alfredo Torrico

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Email: atorrico3 at gatech dot edu, sebastian.pokutta, mohit.singh at isye dot gatech dot edu

Computational Experiments

In all experiments we consider partition constraints Z = {S': |S'n P;| < b, Vj € [q]}, note same budget
b for each part.

Tested Algorithms and Baselines.
* (prevE-G) the extended greedy of [1] with no improvements, ¢ = [log %]
* (E-G) the extended greedy of [1] with improvements, ¢ = |log %]
* (E-ThG) the extended threshold greedy (this work), £ = [log 2£/1og(2 - §)].

* (E-StochG) a heuristic we called extended stochastic greedy, ¢ = [log %]
e (RS) Random Selection.
* (G-AvqQ) the lazy greedy algorithm on the average function % ZZ-E[ K] fi.

Experiment #1: Non-parametric Learning.
e In this experiment we show that our improved algorithms clearly outperform prevE-G.

et Xy be a set of random variables corresponding to bio-medical measurements, indexed by a
ground set of patients V. We assume for every subset S ¢V, Xg ~ N (g, Xg 5).

* We assume the covariance matrix X g g = [KC¢ ¢/]¢ ¢7¢ g to be given in terms of the squared exponential
kernel K, o/ = exp(—| e - xefH%/h) with A = 0.75.

* We use the Parkinson Telemonitoring dataset [8] consisting of n = 5,875 patients with early-stage
Parkinsons disease and the corresponding bio-medical voice measurements with 22 attributes.

e Assuming the Informative Vector Machine (IVM) model, we want to solve

1
max min —10gdet(I+0_2255)+ Z TNe (

Sel ie[20] | 2 eeSA;

where o2 = 1, each A; is a random set of size 1,000, and 7 ~ [0, I]V 1S a uniform error vector.
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Figure 1: Non-parametric learning. We made 20 random runs considering ¢ = 3 parts and budget b = 5. Performance
profiles (a) for running time (note that E—-G 1s covered by E-ThG) and (b) for function calls. In (c) 1s the objective value
versus the violation ratio in a single run of each method. In (d) is the box-plot for the function calls.

Experiment #2: Exemplar-based Clustering.

e In this experiment we show that E—-ThG outperforms the rest since its no-dependency on the rank.
We do not implement prevE-G.

 Solving the £-medoid problem is a common way to select a subset of exemplars that represent a large
dataset V' [5]. This 1s done by minimizing the sum of pairwise dissimilarities between elements.

'Forany e € V and A c B c V\{e}, ga(e) > gp(e), where ga(e) := g(A+e) —g(A) and A+e:= Au{e}

e Formally, define L(5) = % > ey min,cgd(e,v), where d : V x V' — Ry is a distance function that
represents the dissimilarity between a pair of elements. By introducing an appropriate auxiliary ele-
ment e, it is possible to define a new objective f(A) := L({eg}) — L(A + ep) that is monotone and
submodular [4], thus maximizing f is equivalent to minimizing L.

* We use the VOC2012 dataset [3] where the ground set V' corresponds to images. These images are
represented by feature vectors (number of elements in them).

» We use the Euclidean distance d(e,e’) = |xe — x| and x¢, as the origin. We want to solve

max min S) + :
52 e eeszmine

where f is the function defined above, each A; is a random set of fixed size with i € [20], and
n ~ |0, 1]V 1s a uniform error vector.

* We consider two experiments: (small) with n = 3,000 images, 20 random instances consider-
ing ¢ = 6and b = 70, |A;| = 500 and (1arge) with n = 17,125 images, 20 random instances

q € {10,...,29} parts and budget b = 5, |\;| = 3, 000.
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Figure 2: Clustering: (small) performance profiles (a) for the running time and (b) for the function calls. (Large)
box-plots (c) for the running time and (d) for the function calls.
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