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Problem Formulation
• Ground set V = {1, . . . , n} and matroidM= (V,I).

• Collection of of non-negative, monotone, submodular1 functions fi ∶ 2V → R+. We want to solve:

max
S∈I

min
i∈[k]

fi(S) (1)

• Krause et al. [6] prove that problem (1) is NP-hard to approximate to any polynomial factor. This
motivates the necessity of bi-criteria solutions.

Our Approach: relax the constraints. We construct a small family of feasible sets whose union SALG

has (nearly) optimal objective value.

Example in partition constraints:
• V = P1 ⊍⋯ ⊍ Pq and I = {S ⊆ V ∶ ∣S ∩ Pj ∣ ≤ bj, ∀j ∈ [q]}.

• SALG = S1 ∪⋯ ∪ S` → ∣SALG ∩ Pj ∣ ≤ ` ⋅ bj.

Our Results and Contributions
• Extended version of the threshold greedy algorithm introduced by Badanidiyuru and Vondrak [2].

Algorithm 1 Extended Threshold-Greedy
Input: ` ≥ 1, ground set V with n ∶= ∣V ∣, monotone submodular function g ∶ 2V → R+, matroid
M= (V,I) and δ > 0.

Output: feasible sets S1, . . . , S` ∈ I .
1: for τ = 1, . . . , ` do
2: Sτ ← ∅
3: d← maxe∈V g(∪τ−1

j=1Sj + e)
4: for (w = d;w ≥ δ

nd;w ← (1 − δ)w) do
5: for e ∈ V /Sτ do
6: if Sτ + e ∈ I and g∪τj=1Sj(e) ≥ w then
7: Sτ ← Sτ + e

Proposition 1. Given ` ≥ 1, a monotone submodular function g ∶ 2V → R+ with g(∅) = 0, and parameter
δ > 0, Algorithm 1 returns feasible sets S1, . . . , S` ∈ I such that

g (S1 ∪⋯ ∪ S`) ≥ (1 − ( 1

2 − δ)
`
) ⋅max

S∈I
g(S).

This algorithm performs O(n`δ log nδ) function calls, independent of the rank of the matroid.

• Efficient bi-criteria algorithm for problem (1).

– Outer loop: get an estimate γ on the value OPT ∶= maxS∈Imini∈[k] fi(S) via a binary search.

– Inner loop: for a given δ > 0, run Algorithm 1 on gγ(S) ∶= 1
k∑i∈[k] min{fi(S), γ} with

` = ⌈log 2k
ε / log(2 − δ)⌉.

– We stop the binary search whenever we get a relative error of 1− ε/2, namely, (1− ε/2)OPT ≤ γ ≤
OPT.

Theorem 1. For problem (1), there is a polynomial time algorithm that returns a set SALG, such that
for given 0 < ε, δ < 1, for all j ∈ [k] it holds

fj(SALG) ≥ (1 − ε) ⋅max
S∈I

min
i∈[k]

fi(S),

where SALG = S1 ∪ ⋅ ⋅ ⋅ ∪ S` with ` = ⌈log 2k
ε / log(2 − δ)⌉, and S1, . . . , S` are feasible.

• Implementation improvement: early stopping criteria.

– If in iteration τ ∈ [`] of Algorithm 1 on gγ we obtain a set Sτ such that gγ(∪τt=1St) < (1 − 1/(2 −
δ)τ) ⋅ γ, then we stop and update the upper bound on the optimum to be γ.

Computational Experiments
In all experiments we consider partition constraints I = {S ∶ ∣S ∩ Pj ∣ ≤ b, ∀j ∈ [q]}, note same budget
b for each part.

Tested Algorithms and Baselines.
• (prevE-G) the extended greedy of [1] with no improvements, ` = ⌈log 2k

ε ⌉.
• (E-G) the extended greedy of [1] with improvements, ` = ⌈log 2k

ε ⌉.
• (E-ThG) the extended threshold greedy (this work), ` = ⌈log 2k

ε / log(2 − δ)⌉.
• (E-StochG) a heuristic we called extended stochastic greedy, ` = ⌈log 2k

ε ⌉.
• (RS) Random Selection.
• (G-Avg) the lazy greedy algorithm on the average function 1

k∑i∈[k] fi.

Experiment #1: Non-parametric Learning.
• In this experiment we show that our improved algorithms clearly outperform prevE-G.
• Let XV be a set of random variables corresponding to bio-medical measurements, indexed by a

ground set of patients V . We assume for every subset S ⊆ V , XS ∼ N(µS,ΣS,S).
• We assume the covariance matrix ΣS,S = [Ke,e′]e,e′∈S to be given in terms of the squared exponential

kernel Ke,e′ = exp(−∥xe − xe′∥2
2/h) with h = 0.75.

• We use the Parkinson Telemonitoring dataset [8] consisting of n = 5, 875 patients with early-stage
Parkinsons disease and the corresponding bio-medical voice measurements with 22 attributes.

• Assuming the Informative Vector Machine (IVM) model, we want to solve

max
S∈I

min
i∈[20]

⎧⎪⎪⎨⎪⎪⎩

1

2
log det(I+σ−2 ΣSS) + ∑

e∈S∩Λi

ηe

⎫⎪⎪⎬⎪⎪⎭
,

where σ2 = 1, each Λi is a random set of size 1,000, and η ∼ [0, 1]V is a uniform error vector.
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Figure 1: Non-parametric learning. We made 20 random runs considering q = 3 parts and budget b = 5. Performance
profiles (a) for running time (note that E-G is covered by E-ThG) and (b) for function calls. In (c) is the objective value
versus the violation ratio in a single run of each method. In (d) is the box-plot for the function calls.

Experiment #2: Exemplar-based Clustering.
• In this experiment we show that E-ThG outperforms the rest since its no-dependency on the rank.

We do not implement prevE-G.
• Solving the k-medoid problem is a common way to select a subset of exemplars that represent a large

dataset V [5]. This is done by minimizing the sum of pairwise dissimilarities between elements.

• Formally, define L(S) = 1
V ∑e∈V minv∈S d(e, v), where d ∶ V × V → R+ is a distance function that

represents the dissimilarity between a pair of elements. By introducing an appropriate auxiliary ele-
ment e0, it is possible to define a new objective f(A) ∶= L({e0}) − L(A + e0) that is monotone and
submodular [4], thus maximizing f is equivalent to minimizing L.

• We use the VOC2012 dataset [3] where the ground set V corresponds to images. These images are
represented by feature vectors (number of elements in them).

• We use the Euclidean distance d(e, e′) = ∥xe − xe′∥ and xe0 as the origin. We want to solve

max
S∈I

min
i∈[20]

⎧⎪⎪⎨⎪⎪⎩
f(S) + ∑

e∈S∩Λi

ηe

⎫⎪⎪⎬⎪⎪⎭
,

where f is the function defined above, each Λi is a random set of fixed size with i ∈ [20], and
η ∼ [0, 1]V is a uniform error vector.

• We consider two experiments: (small) with n = 3, 000 images, 20 random instances consider-
ing q = 6 and b = 70, ∣Λi∣ = 500 and (large) with n = 17, 125 images, 20 random instances
q ∈ {10, . . . , 29} parts and budget b = 5, ∣Λi∣ = 3, 000.
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Figure 2: Clustering: (small) performance profiles (a) for the running time and (b) for the function calls. (Large)
box-plots (c) for the running time and (d) for the function calls.
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1For any e ∈ V and A ⊆ B ⊆ V /{e}, gA(e) ≥ gB(e), where gA(e) ∶= g(A + e) − g(A) and A + e ∶= A ∪ {e}


