

Background

- In New York City, about 100,000 students enter public high schools each year.
- How to assign students to schools?

One-to-Many Matching Model

- Every student $a \in A$ has a strict **preference** ordering, $>_a$, of the schools (possibly incomplete).
- Every school $b \in B$ has a strict **preference** ordering, $>_b$, of the students (possibly incomplete) and a **quota** q_b .
- Represent an instance as $(G(A \dot{\cup} B, E), <, \mathbf{q})$.

Objectives

Stability

- ▶ no *blocking pairs*, i.e. no student and school that are not assigned to each other would both prefer to be.
- Pareto efficiency (for students)
- ▶ no assignment where every student is at least as good, and some student is strictly better off.
- Legality [5]
- ▶ no blocking pair that is *redressable*, i.e. the student and school forming the blocking pair are not matched in any legal assignments.

Trade-off and Why EADAM

- There is a significant trade-off between stability and efficiency.
- Gale-Shapley [2] outputs a stable assignment that is optimal for the students, but may not be Pareto efficient.
- Efficiency Adjusted Deferred Acceptance Mechanism (EADAM) asks for students' *consent*, as to waive his priority to a certain school if applying only interrupts other students' chance of being admitted, but at no gain to himself.
- If all students consent, output of EADAM is Pareto efficient; otherwise, the output is *constraint efficient* [6]:
- ▶ **Pseudo stable**: with consent, it respects all students' priorities. ► **Pseudo efficient**: among all assignments that respect students' priorities, it is optimal for the students.

What is Known

- The set of legal assignments exists and is unique.
- The set of legal assignments forms a lattice, which has the set of stable assignments as a sublattice.
- The student-optimal legal assignment coincides with the output of EADAM when all students consent, thus is Pareto efficient.

What is New

• Structural:

- ► The set of legal assignments coincides with the set of stable assignments in a (sub)instance, which we call the *legalized* instance.
- Algorithmic #1:
- ► The legalized instance, the student-optimal legal assignment, and the school-optimal legal assignment can be found in time O(|E|).
- ► Legal assignment with maximum weight can be found in polynomial time. • Algorithmic #2:
- ► Output of EADAM with consent, with *any* set of students consenting, can be found in time O(|E|).

Legal Assignments, the EADAM algorithm

Yuri Faenza, Xuan Zhang Columbia University

Techniques

- Generalize *rotations* (trading cycles that preserve stability) to one-to-many settings.
- Jump out of the stable lattice by identifying and removing edges that are not in the legalized instance.
- Construct *rotation digraphs* locally and partially for fast implementation.

Example

Consider the following instance with 6 students and 3 schools. Each school has a quota of 2.

 $a_1: |b_2| > b_3 > \underline{b_1}$ $a_2: b_1 \ > \overline{b_2} > b_3$ $a_3: \mathbf{b_3} > |b_1| > b_2$ $a_4: |b_1| > b_2 > b_3$ $a_5: \overline{b_3} > b_2 > b_1$ $a_6: \mathbf{b_1} > \overline{b_3} > b_2$

 $b_1: \underline{a_1} > \overline{a_4} > \overline{a_3} > \overline{a_5} > a_2 > \mathbf{a_6}$ $b_2: \underline{a_3} > \overline{a_2} > a_6 > \overline{a_1} > a_5 > a_4$ $b_3: \overline{a_6} > a_1 > \overline{a_5} > a_2 > a_4 > \mathbf{a}$

This instance has one stable assignment $M = \{a_1b_2, a_2b_2, a_3b_1, a_4b_1, a_5b_3, a_6b_3\}$, and two additional legal assignments: $M^{1} = \{a_{1}b_{2}, a_{2}b_{2}, \mathbf{a_{3}b_{3}}, a_{4}b_{1}, a_{5}b_{3}, \mathbf{a_{6}b_{1}}\}$ and $M^{2} = \{a_{1}b_{1}, a_{2}b_{2}, a_{3}b_{2}, a_{4}b_{1}, a_{5}b_{3}, a_{6}b_{3}\}$, which can be obtained via ...

Rotate-and-Remove

goal: school-optimal legal assignment M^2

- 1. let $s_M^*(a)$ be the first school $b \neq M(a)$ on a's preference list that prefers a to some of her assigned students
- 2. point a to $s_M^*(a)$'s least preferred student in M, as to construct the rotation digraph D_A

3-1. if $(a', a) \in A(D_A)$ and a is a sink, remove a'M(a) from the instance and repeat

- **3-2.** if D_A has a cycle C, for every $(a', a) \in A(C)$, reassign a' to M(a) to obtain a new assignment, M^2 in this case; repeat
- 4. execute until D_A only has isolated nodes

Reverse Rotate-and-Remove with Consent Fast Implementation of EADAM

• In step 3-1. of reverse rotate-and-remove, if a is nonconsenting, we will additionally remove all edges a'b' such that $a >_{b'} a'$.

^L 6		$M^{ m I}$
24		
13	Ť	M
		M^2

Reverse Rotate-and-Remove goal: student-optimal legal assignment M^1

1. let $s_M^*(b)$ be the first student $a \notin M(b)$ on b's preference list that prefers b to his assigned school

2. point b to $s_M^*(b)$ and point $s_M^*(b)$ to $M(s_M^*(b))$, as to construct the rotation digraph D_B

3-1. if (b', a) and $(a, b) \in A(D_B)$ and b is a sink, remove ab' from the instance and repeat

$$b_3$$
 a_3 b_1 b_2

3-2. if D_B has a cycle C, for every $(b', a) \in A(C)$, reassign a to b' to obtain a new assignment, M^{\perp} in this case; repeat

4. execute until D_B only has isolated nodes

- [1] Faenza, Y., & Zhang, X. (2018). Legal assignments and fast EADAM with consent via classical theory of stable marriages. Working paper.
- [2] Gale, D., & Shapley, L. S. (1962). College admissions and the stability of marriage. The American Mathematical Monthly, 69(1), 9-15.
- [3] Gusfield, D., & Irving, R. W. (1989). The stable marriage problem: structure and algorithms. MIT press.
- [5] Morrill, T. (2016). Which School Assignments Are Legal?. Working paper, North Carolina State University, 2016. [6] Tang, Q., & Yu, J. (2014). A new perspective on Kesten's school choice with consent idea. Journal of Economic Theory, 154, 543-561.

Lattice

• Stable assignment M dominates stable assignment M', denoted by $M \succeq M'$, if $M(a) \ge_a M'(a)$ for every student a. • The set of stable assignments \mathcal{S} , with dominance relation \succeq , forms a *distributive lattice*, with *join* (\lor) and *meet* (\land) : ► $M_1 \lor M_2 := \{a\overline{b} : a \in A, \overline{b} = M_1(a) \lor_{>_a} M_2(a)\}$ $\blacktriangleright M_1 \land M_2 := \{a\underline{b} : a \in A, \underline{b} = M_1(a) \land_{\geq_a} M_2(a)\}$

• The set of legal assignments \mathcal{L} , with dominance relation \succeq , forms a distributive lattice with the same join and meet.

Examples of Lattices

Rotations

• A cycle $\rho = b_0, a_0, b_1, a_1, \cdots, b_{r-1}, a_{r-1}$ is a student-rotation exposed at stable assignment M if $a_i b_i \in M$ and $b_{i+1} = s_M^*(a_i)$ for all i, with indices taken modulo r.

• We can move down the lattice via *rotation eliminations*. Obtain an assignment M' that is immediately below M in the lattice, by assigning

$$M'(a) = \begin{cases} M(a) & \text{if } a \notin \rho \\ b_{i+1} & \text{if } a = a_i \end{cases}$$

• Every stable assignment can be generated by a sequence of rotation eliminations, starting from the student-optimal stable assignment. Every such sequence contains the same rotations.

• Concepts and results can be extended to school-rotations.

References

[4] Kesten, O. (2010). School choice with consent. The Quarterly Journal of E conomics, 125(3), 1297-1348.