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Effectively model and solve the condition-based maintenance and operations scheduling problem of a fleet Load-dependent generator maintenance and operations scheduling problem can be formulated as a stochas- . . .
= Computational efficiency of the proposed approach on sample hard instances:

of generators with explicit consideration of decision-dependent degradation and uncertainty of generator tic program as follows: . , o , . , ,
il = Priority branching: prioritize branching decisions of maintenance over commitment
ALUIes min AC(d)'z+V'e +W'y Total cost via weighted sum
& " Y —— T 2%,y _ | 39-bus  118-bus
. Az < Maintenance Log formulation 437.62  1704.73
Sgﬂggtg?sta acquisition from Bz+ Ex <m Coupling Log formulation with enhancements 233.74  1014.94
. _ o : Fe+Hy+Gd<n Operation Log formulation with enhancements + priority branching 193.04 908.88
Modeling of degradation signals Maintenance Problem TIx|G] TG x|9]
Analytically predict: z € 40,1} .z €4{0,1} Y, d > 0. Table: Run time (seconds) comparison on sample instances.
. Remaining Lifetime Distribution _ Decision variables:
- Operational Problem 2. maintenance start time

7 BTEmEEShEncei Cost How to evaluate solutions?

x, y: commitment decision and dispatch amount
l=p| 150 / o le—p =l M. ] d: degradation amount in terms of operational variables o , . , , o
- J ks O 0 , Develop a decision-dependent simulation framework for evaluating a solution considering the
< / THESS IR . Random variables: . . .
2 100 A 2l LT T S . underlying signal variability
g gt s Aoty i e hi HEHHAIILS g of 5en?rat0r - . | Check generator’s signal at the end of each period by generating signal degradation based on d
g 50 / / U o oM i Co(d) 1, if generator ¢ fails until time ¢ under decision d, i.e. Pr(R; < d) lovel:
S Y , YA s L DREN HO) Y i i t\&) = : '
o ek gy R A 0, otherwise = If scheduled maintenance is at current period, generator enters maintenance as planned.
0 20 10 60 80 100 120 140 160 Chance-constraint: For ensuring a reliable maintenance plan restricting the number of generators = If signal amplitude exceeds the failure threshold, failure occurs and generator enters corrective
Ul e that enter maintenance due to a failure with a threshold p with high probability 1 — € maintenance. Incur demand curtailment for production loss.
. L | | | Maintenance Constraints: One maintenance per year, capacity constraint on maintenance schedules - Otherwise, continue to the next period.
Figure: Decision-dependent Maintenance and Operations Planning Framework . ) , .. . : :
Coupling Constraints: Generators are off under maintenance Repeat decision-based simulation procedure 1000 times for each generator
. Operational Constraints: Coupling between degradation amount and operational decisions, produc- Solve optimization model with 5 different set of initial signals assigned to generators, and repeat
Analytics Framework - o Timits. demand satisfacti - cion Tine limi " . |
tion capacity limits, demand satistaction constraint, transmission line limits the overall simulation procedure for evaluating solutions

= Resulting optimization model is mixed-integer nonlinear due to the structure of the objective and the
chance-constraint!

How to model generator conditions?

= Sample evaluation of load-dependent (LD) and load-independent (LI) solutions under high

= Model generator signals as a linear model with Brownian motion Proposition (extended [1] to decision-dependent setting): system congestion:
= Estimate remaining lifetime distributions of generators using sensor observations and e Type # of failures Maintenance cost ($M) Gain (%) Total cost ($M) Gain (%)
posterior distributions through Bayesian updates E[(d)]" z < max (p €, max ) is a safe approximation of the chance constraint. .D 0.27 0.38 44.06 11.72 37 49
a>0 0.05
0-hus LI 1.27 0.68 18.75
LD 0.27 0.38 43.78 11.99 36.26
= Maintenance cost function of generator ¢ at time ¢ with initial age ¢¢: 0.10 L 197 0.68 18 81
= Represents the trade-off between preventive and corrective maintenance How to linearize the optimization problem? LD 0.53 1.16 46.79 113.64 36.01
= Nonlinear in its argument! 0.05 T 3.03 218 177.60
Coy(w) CPPr(R; > w) + C°Pr(R; < w) ® Piecewise linearization: Map continuous degradation amount d to the maintenance cost C(d) and sboms 0 il LD 0.60 1.18 46.00 115.46 35.49
L) = fow Pr(R; > z)dz +t° the probability distribution of ((d) ' LI 3.96 2.19 178.97
Identity break points in terms of d and evaluate functions at these points .D 0.54 206 36.56 70.23 20 69
= For a load-independent model, w simply equals to age of generator, ¢ As the functions are not convex, we need SOS2 constraints e 0.05 11 451 3 95 09 88
— Existing approach in literature for maintenance scheduling [1] Adopt log formulation with logarithmically many extra binary variables |2] o 010 P 0.41 2.02 37.19 69.88 29.11
Improve formulation by conducting a polyhedral study and integrating into piecewise ' IR 4 41 399 08 57

= For a load-dependent model, w equals to degradation equivalent age of generator, namely d,
depending on operational decisions

linearization
= Significant reductions in cost and failure under different A, €, and system congestion levels

® McCormick envelopes: Use for bilinear terms where one of the variables is the binary variable z

— Proposed approach!

— Remaining lifetime distribution and maintenance cost function involve decision-dependent
uncertainty!

— Model degradation amount d as an affine function of the operational decisions x and y

= Results in an exact formulation
= Improve upper bounds of the formulation by examining maintenance cost function and
remaining lifetime distribution by considering the definition of variable d
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