Data-driven Generator Maintenance and Operations Scheduling under Decision-dependent Uncertainty

Motivation

Effectively model and solve the condition-based maintenance and operations scheduling problem of a fleet of generators with explicit consideration of decision-dependent degradation and uncertainty of generator failures

Figure: Decision-dependent Maintenance and Operations Planning Framework

Analytics Framework

How to model generator conditions?

- Model generator signals as a linear model with Brownian motion
- Estimate **remaining lifetime distributions** of generators using sensor observations and posterior distributions through Bayesian updates
- Maintenance cost function of generator i at time t with initial age t_i^o :
- \Rightarrow Represents the trade-off between preventive and corrective maintenance
- \Rightarrow **Nonlinear** in its argument!

$$C_{i,t}(w) = \frac{C^p \operatorname{Pr}(R_i > w) + C^c \operatorname{Pr}(R_i \le w)}{\int_0^w \operatorname{Pr}(R_i > z) dz + t_i^o}$$

 \Rightarrow For a **load-independent** model, w simply equals to age of generator, t

 \rightarrow Existing approach in literature for maintenance scheduling [1]

 \Rightarrow For a **load-dependent** model, w equals to degradation equivalent age of generator, namely d, depending on operational decisions

- \rightarrow Proposed approach!
- \rightarrow Remaining lifetime distribution and maintenance cost function involve **decision-dependent** uncertainty!
- \rightarrow Model degradation amount d as an affine function of the operational decisions x and y

$$d = \alpha^{\top} x + \beta^{\top} y$$

 \rightarrow Integrate signal variability to the model by learning from the data set to estimate α, β

Beste Basciftci, Shabbir Ahmed, Nagi Gebraeel

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

Optimization Framework

Load-dependent generator maintenance and operations scheduling problem can be formulated as a stochastic program as follows:

 $\min_{z,x,y,d} \lambda C(d)^{\top} z + V^{\top} x + W^{\top} y$ s.t. $\Pr(\zeta(d)^{\top} z \leq \rho) \geq 1 - \epsilon$ $Az \leq l$ $Bz + Ex \le m$ $Fx + Hy + Gd \le n$ $z \in \{0,1\}^{|\mathcal{T}| \times |G|}, x \in \{0,1\}^{|\mathcal{T}| \times |G| \times |S|}, y, d \ge 0.$

Decision variables:

z: <u>maintenance</u> start time

x, y: <u>commitment</u> decision and dispatch amount

d: degradation amount in terms of operational variables

Random variables:

 R_i : remaining lifetime of generator i

1, if generator *i* fails until time *t* under decision *d*, i.e. $\Pr(R_i \leq d)$ $\zeta_{i,t}(d) =$ 0, otherwise

Chance-constraint: For ensuring a reliable maintenance plan restricting the number of generators that enter maintenance due to a failure with a threshold ρ with high probability $1 - \epsilon$ Maintenance Constraints: One maintenance per year, capacity constraint on maintenance schedules **Coupling Constraints:** Generators are off under maintenance **Operational Constraints:** Coupling between degradation amount and operational decisions, production capacity limits, demand satisfaction constraint, transmission line limits \Rightarrow Resulting optimization model is mixed-integer nonlinear due to the structure of the objective and the chance-constraint!

$$\begin{aligned} & \mathbf{Proposition} \text{ (extended [1] to decise} \\ & \mathbf{E}[\zeta_{(d)}]^{\top} z \leq \max \left(\rho \, \epsilon, \max_{\alpha > 0} \left[\frac{((\epsilon \, e^{\alpha \rho})^{1/|\mathcal{G}|} - 1)|\mathcal{G}|}{e^{\alpha} - 1} \right] \right) \text{ is a} \end{aligned}$$

How to linearize the optimization problem?

- 1 <u>Piecewise linearization</u>: Map continuous degradation amount d to the maintenance cost C(d) and the probability distribution of $\zeta(d)$
- Identify break points in terms of *d* and evaluate functions at these points
- As the functions are not convex, we need SOS2 constraints
- Adopt log formulation with logarithmically many extra binary variables [2]
- Improve formulation by conducting a polyhedral study and integrating into piecewise linearization
- 2 McCormick envelopes: Use for bilinear terms where one of the variables is the binary variable z
- Results in an exact formulation
- Improve upper bounds of the formulation by examining maintenance cost function and remaining lifetime distribution by considering the definition of variable d

<u>Note</u>: In load-independent models, C(d) and $\zeta(d)$ values only change with respect to the time a generator enters maintenance, irrespective of the operational decisions and variable d.

Total cost via weighted sum

Chance-constraintMaintenance Coupling Operation

ion-dependent setting):

a safe approximation of the chance constraint.

Linear formulation Log formulation Log formulation with Log formulation with

- underlying signal variability
- level:
- Otherwise, continue to the next period.

- system congestion:

	ϵ	Type	# of failures	Maintenance cost (\$M)	Gain $(\%)$	Total cost (M)	Gain $(\%)$
9-bus	0.05	LD	0.27	0.38	44.06	11.72	37.49
		LI	1.27	0.68		18.75	
	0.10	LD	0.27	0.38	43.78	11.99	36.26
		LI	1.27	0.68		18.81	
39-bus	0.05	LD	0.53	1.16	46.79	113.64	36.01
		LI	3.93	2.18		177.60	
	0.10	LD	0.60	1.18	46.00	115.46	35.49
		LI	3.96	2.19		178.97	
118-bus	0.05	LD	0.54	2.06	36.56	70.23	29.69
		LI	4.51	3.25		99.88	
	0.10	LD	0.41	2.02	37.19	69.88	29.11
		LI	4.41	3.22		98.57	

• Significant reductions in cost and failure under different λ , ϵ , and system congestion levels

[1] B. Basciftci, S. Ahmed, N.Z. Gebraeel, M.Yildirim. "Stochastic Optimization of Maintenance and Operations Schedules under Unexpected Failures," IEEE Transactions on Power Systems, 2018. [2] J. P. Vielma, S. Ahmed, G. Nemhauser, "Mixed-integer models for nonseparable piecewise-linear optimization: Unifying framework and extensions," Operations Research, 2010.

Computational Results

• Computational efficiency of the proposed approach on sample hard instances: • Priority branching: prioritize branching decisions of maintenance over commitment

	39-bus	118-bus
	>10000.00	>10000.00
	437.62	1704.73
enhancements	233.74	1014.94
enhancements + priority branching	193.04	908.88

Table: Run time (seconds) comparison on sample instances.

How to evaluate solutions?

• Develop a decision-dependent simulation framework for evaluating a solution considering the

• Check generator's signal at the end of each period by generating signal degradation based on d

• If scheduled maintenance is at current period, generator enters maintenance as planned. • If signal amplitude exceeds the failure threshold, failure occurs and generator enters corrective maintenance. Incur demand curtailment for production loss.

• Repeat decision-based simulation procedure 1000 times for each generator

Solve optimization model with 5 different set of initial signals assigned to generators, and repeat the overall simulation procedure for evaluating solutions

• Sample evaluation of **load-dependent (LD)** and **load-independent (LI)** solutions under high

References