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Motivation

Effectively model and solve the condition-based maintenance and operations scheduling problem of a fleet
of generators with explicit consideration of decision-dependent degradation and uncertainty of generator
failures

Figure: Decision-dependent Maintenance and Operations Planning Framework

Analytics Framework

How to model generator conditions?

• Model generator signals as a linear model with Brownian motion
• Estimate remaining lifetime distributions of generators using sensor observations and

posterior distributions through Bayesian updates

• Maintenance cost function of generator i at time t with initial age toi :
⇒ Represents the trade-off between preventive and corrective maintenance
⇒ Nonlinear in its argument!

Ci,t(w) = Cp Pr(Ri > w) + Cc Pr(Ri ≤ w)∫ w
0 Pr(Ri > z)dz + toi

⇒ For a load-independent model, w simply equals to age of generator, t
→ Existing approach in literature for maintenance scheduling [1]

⇒ For a load-dependent model, w equals to degradation equivalent age of generator, namely d,
depending on operational decisions
→ Proposed approach!
→ Remaining lifetime distribution and maintenance cost function involve decision-dependent
uncertainty!
→ Model degradation amount d as an affine function of the operational decisions x and y

d = α>x + β>y

→ Integrate signal variability to the model by learning from the data set to estimate α, β

Optimization Framework

Load-dependent generator maintenance and operations scheduling problem can be formulated as a stochas-
tic program as follows:

min
z,x,y,d

λC(d)>z + V >x +W>y Total cost via weighted sum

s.t. Pr(ζ(d)>z ≤ ρ) ≥ 1− ε Chance− constraint
Az ≤ l Maintenance

Bz + Ex ≤ m Coupling

Fx +Hy +Gd ≤ n Operation

z ∈ {0, 1}|T |×|G|, x ∈ {0, 1}|T |×|G|×|S|, y, d ≥ 0.
Decision variables:
z: maintenance start time
x, y: commitment decision and dispatch amount
d: degradation amount in terms of operational variables
Random variables:
Ri: remaining lifetime of generator i

ζi,t(d) =

{
1, if generator i fails until time t under decision d, i.e. Pr(Ri ≤ d)
0, otherwise

Chance-constraint: For ensuring a reliable maintenance plan restricting the number of generators
that enter maintenance due to a failure with a threshold ρ with high probability 1− ε
Maintenance Constraints: One maintenance per year, capacity constraint on maintenance schedules
Coupling Constraints: Generators are off under maintenance
Operational Constraints: Coupling between degradation amount and operational decisions, produc-
tion capacity limits, demand satisfaction constraint, transmission line limits
⇒ Resulting optimization model is mixed-integer nonlinear due to the structure of the objective and the
chance-constraint!

Proposition (extended [1] to decision-dependent setting):

E[ζ(d)]>z ≤max

(
ρ ε,max

α>0

[
((ε eαρ)1/|G| − 1)|G|

eα − 1

])
is a safe approximation of the chance constraint.

How to linearize the optimization problem?

1 Piecewise linearization: Map continuous degradation amount d to the maintenance cost C(d) and
the probability distribution of ζ(d)
• Identify break points in terms of d and evaluate functions at these points
• As the functions are not convex, we need SOS2 constraints
• Adopt log formulation with logarithmically many extra binary variables [2]
• Improve formulation by conducting a polyhedral study and integrating into piecewise

linearization
2 McCormick envelopes: Use for bilinear terms where one of the variables is the binary variable z

• Results in an exact formulation
• Improve upper bounds of the formulation by examining maintenance cost function and

remaining lifetime distribution by considering the definition of variable d

Note: In load-independent models, C(d) and ζ(d) values only change with respect to the time a generator
enters maintenance, irrespective of the operational decisions and variable d.

Computational Results

• Computational efficiency of the proposed approach on sample hard instances:
• Priority branching: prioritize branching decisions of maintenance over commitment

39-bus 118-bus
Linear formulation >10000.00 >10000.00
Log formulation 437.62 1704.73
Log formulation with enhancements 233.74 1014.94
Log formulation with enhancements + priority branching 193.04 908.88

Table: Run time (seconds) comparison on sample instances.

How to evaluate solutions?

• Develop a decision-dependent simulation framework for evaluating a solution considering the
underlying signal variability

• Check generator’s signal at the end of each period by generating signal degradation based on d
level:
• If scheduled maintenance is at current period, generator enters maintenance as planned.
• If signal amplitude exceeds the failure threshold, failure occurs and generator enters corrective

maintenance. Incur demand curtailment for production loss.
• Otherwise, continue to the next period.

• Repeat decision-based simulation procedure 1000 times for each generator
• Solve optimization model with 5 different set of initial signals assigned to generators, and repeat

the overall simulation procedure for evaluating solutions

• Sample evaluation of load-dependent (LD) and load-independent (LI) solutions under high
system congestion:

ε Type # of failures Maintenance cost ($M) Gain (%) Total cost ($M) Gain (%)

9-bus
0.05 LD 0.27 0.38 44.06 11.72 37.49

LI 1.27 0.68 18.75

0.10 LD 0.27 0.38 43.78 11.99 36.26
LI 1.27 0.68 18.81

39-bus
0.05 LD 0.53 1.16 46.79 113.64 36.01

LI 3.93 2.18 177.60

0.10 LD 0.60 1.18 46.00 115.46 35.49
LI 3.96 2.19 178.97

118-bus
0.05 LD 0.54 2.06 36.56 70.23 29.69

LI 4.51 3.25 99.88

0.10 LD 0.41 2.02 37.19 69.88 29.11
LI 4.41 3.22 98.57

• Significant reductions in cost and failure under different λ, ε, and system congestion levels
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