Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems

Sahar Tahernejad1 Ted K. Ralphs1

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

Contributions

- Comparing the performance of the known classes of valid inequalities for mixed integer bilevel linear optimization problems (MIBLPs) within the MiBS open source solver [6], [3]
- Suggestion of a new method that can be used to
 - strengthen the known cuts by generating supporting valid inequalities
 - compare the strength of various valid inequalities
 - develop a new family of cuts for MIBLPs

Problem Definition

The general form of an MIBLP is

\[
\min \{ cx + d^Ty \mid x \in X, y \in P_1(x) \cap P_2(x) \cap Y, d^Ty \leq \phi(b^2 - A^2x) \},
\]

where

- First-level feasible region
 \(P_1(x) = \{ y \in \mathbb{R}^n_+ \mid A^1 x + G^1 y \geq b^1 \} \)
- Second-level feasible region
 \(P_2(x) = \{ y \in \mathbb{R}^m_+ \mid G^2 y \geq b^2 - A^2 x \} \)
- Second-level value function
 \(\phi(\beta) = \min\{d^Ty \mid G^2 y \geq \beta, y \in Y\} \quad \forall \beta \in \mathbb{R}^m_+ \) (VF)

Integrality Constraints: Sets \(X = \mathbb{Z}^n_+ \times \mathbb{R}^{n_1-1}_+ \) and \(Y = \mathbb{Z}^m_+ \times \mathbb{R}^{m_1-1}_+ \) represent integrality constraints.

Further related definitions are as below.

- Linking Variables: The set of indices of first-level variables with non-zero coefficients in the second-level problem (\(x_L \)).
- Bilevel feasible region
 \(F = \{ (x, y) \in X \times Y \mid y \in P_1(x) \cap P_2(x), d^Ty \leq \phi(b^2 - A^2x) \} \)

Relaxation Problem

- Removing the optimality constraint of the second-level problem
 \(S = \{ (x, y) \in \mathbb{R}^{n+m}_+ \mid x \in X, y \in P_1(x) \cap P_2(x) \cap Y \} \)

- Removing the optimality constraint of the second-level problem and the integrality constraints
 \(P = \{ (x, y) \in \mathbb{R}^{n+m}_+ \mid y \in P_1(x) \cap P_2(x) \} \)

MiBS uses \(P \) as the relaxation problem.

Valid Inequalities

The set of valid inequalities for MIBLPs can be classified based on the goals of generating them.

- Feasibility cuts
 - Goal: Removing \((x, y) \notin X \times Y\)
 - These valid inequalities are violated by \((x, y)\), but they are valid for \(S \).
 - This set includes all valid inequalities work for the mixed integer optimization problems (MIBLPs).

- Optimality cuts
 - Goal: Removing \((x, y) \notin X \times Y \), but \(d^Ty > \phi(b^2 - A^2x) \)
 - These valid inequalities are violated by \((x, y)\), but they are valid for \(F \).
 - This set includes
 - Intenders cut
 - \(-x_L \leq b^1 \)
 - \(A^1 x + G^1 y \geq b^1 \) corresponds to each linking variable \(x_L \), there exists \(y \), so that \(x_L = 1 \) results \(y = 0 \).
 - \(G^2 y \leq 0 \).
 - Intersection cut (types I and II) [4]
 - \(A^1 x + G^1 y \geq \beta \) in all \((x, y)\) \(y \) \(S \).
 - \(-Y \) \(\geq 2^n \) and \(\phi \) \(2^n \).
 - Integer no-good cut [6]
 - \(-x_L \leq b^1 \)
 - Watermelon intersection cut [4]
 - \(A^1 x + G^1 y \geq \beta \) in all \((x, y)\) \(y \) \(S \).
 - \(-A^1 x - G^1 y \geq \beta \) in all \((x, y)\) \(y \) \(S \).
 - Hypercube intersection cut [4]
 - \(-x_L \leq b^1 \)

- Projected optimality cuts
 - Goal: Removing all \((x, y) \in P \) with \(x_L = 0 \)
 - These valid inequalities are violated by \((x, y) \in P \) with \(x_L = 0 \), but are valid for \(\alpha = \min \{ d^Ty \mid (x, y) \in F \} \)
 - This set includes the generalized no-good cut which works for the problems with \(x_L \leq b^1 \).